РИМАНОВЫ МНОГООБРАЗИЯ И ТЕНЗОРЫ РИЧЧИ НА НИХ Н.П. Можей, канд. физ.-мат. наук, доцент, БГУИР

Потоки Риччи римановых многообразий использовались в работах, связанных с доказательством гипотезы Пуанкаре, было получено много результатов о существовании и свойствах таких потоков (см. [1]). Поток Риччи определяется через тензор Риччи, который задает кривизну многообразия в одномерном направлении.

Пусть M — многообразие, на котором транзитивно действует группа $G = \overline{G}_x$ – стабилизатор произвольной точки Проблема $x \in M$. G) классификации однородных пространств (M.равносильна классификации (с точностью до эквивалентности) пар групп $\overline{\Lambda}$ и (\overline{G} , G), где $G \subset \overline{G}$. Начнем с локального описания однородных пространств и связностей на них. Пусть \bar{g} – алгебра Ли группы Ли \bar{G} , а g – подалгебра, соответствующая подгруппе G. Инвариантные римановы метрики g на M находятся во взаимно-однозначном соответствии с инвариантными симметрическими невырожденными билинейными формами B на Gмодуле \overline{g}/g . Каждое риманово однородное пространство (\overline{G}, M, g) , $codim_{\overline{0}} \mathbf{g} \leq 4$ описывается тройкой $(\overline{\mathbf{g}}, \mathbf{g}, B)$, будем называть ее локально римановым однородным пространством. Любое локально однородное пространство, допускающее риманову метрику, т.ч. $codim_{\bar{q}}g = 3$ и $g \neq \{0\}$,

эквивалентно одной и только одной из следующих троек:

	Таблица умножения	В	
1.3.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_1 & 0 \\ 0 & 0 & \epsilon_2 \end{array}$	$\varepsilon_1, \varepsilon_2 = \pm 1$
1.3.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε 0 0 0 ε 0 0 0 a	ε=±1,a≠0
1.3.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a 0 0 a 0 0 b	ab≠0

	1								T
1.3.4	$ \begin{array}{c} e_1 \\ u_1 \\ u_2 \\ u_3 \end{array} $	0 u_2	$ \begin{array}{c} u_1 \\ -u_2 \\ 0 \\ e_1-u \\ 0 \end{array} $	u_1 $-\epsilon$ 0		$ \begin{array}{c} u_3 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $		$ \begin{array}{c cccc} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{array} $	$ab \neq 0$
1.3.5	e_1 u_1	e_1 0	u_1 $-u_2$ 0	$ \begin{array}{c} u_2 \\ u_1 \\ e_1 \\ 0 \end{array} $		U		a 0 0 0 a 0 0 0 ±1	<i>a</i> ≠0
1.3.6	$ \begin{array}{c} e_1 \\ u_1 \\ u_2 \\ u_3 \end{array} $	$ \begin{array}{c} e_1 \\ 0 \\ u_2 \\ -u_1 \end{array} $	$ \begin{array}{c} u_1 \\ -u_2 \\ 0 \\ e_1 \end{array} $	u_2 u_1	$ \begin{array}{c} u_3 \\ 0 \\ 0 \\ 0 \end{array} $			a 0 0 a 0 0 ±1	<i>a</i> ≠0
1.3.7	$ \begin{array}{c} e_1 \\ u_1 \\ u_2 \\ u_3 \end{array} $	e_1 0 u_2	u_1 $-u_2$ 0 $-u_3$ 0	<i>u</i> ₂ <i>u</i> ₁ <i>u</i> ₃ 0	$\frac{u_3}{0}$.0	$ \begin{array}{c cccc} \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & a \end{array} $	ε=±1, <i>a</i> ≠0
3.5.1	$ \begin{array}{c} e_1 \\ e_2 \\ e_3 \\ u_1 \\ u_2 \\ u_3 \end{array} $	$\begin{vmatrix} 0 \\ -e_3 \\ e_2 \end{vmatrix}$	3	$ \begin{array}{c} -e_2 \\ e_1 \\ 0 \\ 0 \\ u_3 \end{array} $	$ \begin{array}{r} u_1 \\ -u_3 \\ -u_2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $		$ \begin{array}{c} u_3 \\ u_1 \\ 0 \\ u_2 \\ 0 \\ 0 \\ 0 \end{array} $	1 0 0 0 1 0 0 0 1	±
3.5.2	$ \begin{array}{c} e_1 \\ e_2 \\ e_3 \\ u_1 \\ u_2 \\ u_3 \end{array} $	$ \begin{array}{c} e_1 \\ 0 \\ -e_3 \\ e_2 \\ u_3 \\ 0 \\ -u_1 \end{array} $	$ \begin{array}{c} e_2 \\ e_3 \\ 0 \\ -e_1 \\ u_2 \\ -u_1 \\ 0 \end{array} $	$ \begin{array}{c} e_3 \\ -e_2 \\ e_1 \\ 0 \\ 0 \\ u_3 \end{array} $	$ \begin{array}{c} u_1 \\ -u_3 \\ -u_2 \\ 0 \\ 0 \\ -e_2 \\ -e_1 \end{array} $	$ \begin{array}{c} 0 \\ u_1 \\ -u_3 \\ e_2 \\ 0 \end{array} $	$ \begin{array}{c} u_3 \\ u_1 \\ 0 \\ u_2 \\ e_1 \\ e_3 \\ 0 \end{array} $	a 0 0 0 a 0 0 0 a	<i>a</i> ≠0
3.5.3	e_1 e_2 e_3 u_1 u_2	$ \begin{array}{c} e_1 \\ 0 \\ -e_3 \\ e_2 \\ u_3 \end{array} $	e_2 e_3 0 $-e_1$ u_2 $-u_1$ 0	e_3 $-e_2$ e_1 0 0 u_3	$ \begin{array}{c} u_1 \\ -u_3 \\ -u_2 \\ 0 \\ 0 \\ e_2 \end{array} $	u_2	$ \begin{array}{c} u_3 \\ u_1 \\ 0 \\ u_2 \\ -e_1 \\ -e_3 \\ 0 \end{array} $	a 0 0 0 a 0 0 0 a	

Здесь e_1 , e_2 , e_3 – базис g, u_1 , u_2 , u_3 – дополнительный к g.

Аффинной связностью на паре (\overline{g}, g) называется такое отображение $\Lambda: \overline{g} \to gl(V)$, где $V = \overline{g} / g$, что его ограничение на g есть изотропное представление подалгебры, а все отображение является g-инвариантным. Инвариантные аффинные связности трехмерных римановых однородных пространств в базисе u_1, u_2, u_3 имеют вид:

3.5.1, 3.5.2, 3.5.3. Связность

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & p_{2,3} \\
0 & -p_{2,3} & 0
\end{pmatrix}, \begin{pmatrix}
0 & 0 & -p_{2,3} \\
0 & 0 & 0 \\
p_{2,3} & 0 & 0
\end{pmatrix}, \begin{pmatrix}
0 & p_{2,3} & 0 \\
-p_{2,3} & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

1.3.1 – 1.3.7. Связность

$$\begin{pmatrix} 0 & 0 & p_{1,3} \\ 0 & 0 & p_{2,3} \\ p_{3,1} & p_{3,2} & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -p_{2,3} \\ 0 & 0 & p_{1,3} \\ -p_{3,2} & p_{3,1} & 0 \end{pmatrix}, \begin{pmatrix} r_{1,1} & r_{1,2} & 0 \\ -r_{1,2} & r_{1,1} & 0 \\ 0 & 0 & r_{3,3} \end{pmatrix}$$

Тензорное поле Риччи S - ковариантное тензорное поле степени 2, т.ч.

$$S(X,Y) = tr V \rightarrow R(V,X)Y$$
 для $X,Y,V \in Tx(M)$.

Теорема. Тензоры Риччи римановых однородных пространств:

3.5.1.

3.5.2.

3.5.3.

1.3.1.

$$\begin{array}{|c|c|c|c|c|c|} \hline A & p_{1,3}p_{3,2}\text{-}p_{2,3}p_{3,1}\text{-}p_{3,1}r_{1,2}\text{-}p_{3,2}r_{1,1}\text{+}r_{3,3}p_{3,2} & 0 \\ B & p_{2,3}p_{3,2}\text{+}p_{1,3}p_{3,1}\text{-}p_{3,1}r_{1,1}\text{+}p_{3,2}r_{1,2}\text{+}r_{3,3}p_{3,1} & 0 \\ 0 & 0 & 2p_{1,3}r_{3,3}\text{-}2r_{1,1}p_{1,3}\text{-}2r_{1,2}p_{2,3} \\ \hline \end{array}$$

```
где A = p_{2,3} p_{3,2} + p_{1,3} p_{3,1} - p_{3,1} r_{1,1} + p_{3,2} r_{1,2} + r_{3,3} p_{3,1}, B = p_{1,3} p_{3,2} + p_{2,3} p_{3,1}
+ p_{3,2} r_{1,1} + p_{3,1} r_{1,2} - r_{3,3} p_{3,2}
1.3.2.
    A p_{1,3}p_{3,2}-p_{2,3}p_{3,1}-p_{3,1}r_{1,2}-p_{3,2}r_{1,1}+r_{3,3}p_{3,2}+p_{3,2}
                                                                                      0
    B p_{2.3}p_{3.2}+p_{1.3}p_{3.1}-p_{3.1}r_{1.1}+p_{3.2}r_{1.2}+r_{3.3}p_{3.1}+p_{3.1} 0
    0 \quad 0
                                                                                      2p_{1,3}r_{3,3}-2r_{1,1}p_{1,3}-2r_{1,2}p_{2,3}-2p_{1,3}
где A = p_{2,3} p_{3,2} + p_{1,3} p_{3,1} - p_{3,1} r_{1,1} + p_{3,2} r_{1,2} + r_{3,3} p_{3,1} + p_{3,1}, B = p_{1,3} p_{3,2} + p_{3,3} p_{3,1} + p_{3,1}
p_{2,3} p_{3,1} + p_{3,2} r_{1,1} + p_{3,1} r_{1,2} - r_{3,3} p_{3,2} - p_{3,2}.
1.3.3.
                                                                                           0
        A p_{1,3}p_{3,2}-p_{2,3}p_{3,1}+r_{1,1}-p_{3,1}r_{1,2}-p_{3,2}r_{1,1}+r_{3,3}p_{3,2}
        B p_{2,3}p_{3,2}+p_{1,3}p_{3,1}-1-r_{1,2}-p_{3,1}r_{1,1}+p_{3,2}r_{1,2}+r_{3,3}p_{3,1}
                                                                                           0
       0 0
                                                                                           2p_{1.3}r_{3.3}-2r_{1.1}p_{1.3}-2r_{1.2}p_{2.3}
где A = p_{2,3} p_{3,2} + p_{1,3} p_{3,1} - 1 - r_{1,2} - p_{3,1} r_{1,1} + p_{3,2} r_{1,2} + r_{3,3} p_{3,1}, B = -p_{1,3} p_{3,2}
+ p_{2,3} p_{3,1} - r_{1,1} + p_{3,2} r_{1,1} + p_{3,1} r_{1,2} - r_{3,3} p_{3,2}.
1.3.4.
                                                                                           0
        A p_{1.3}p_{3.2}-p_{2.3}p_{3.1}+r_{1.1}-p_{3.1}r_{1.2}-p_{3.2}r_{1.1}+r_{3.3}p_{3.2}
                                                                                           0
        B p_{2,3}p_{3,2}+p_{1,3}p_{3,1}+1-r_{1,2}-p_{3,1}r_{1,1}+p_{3,2}r_{1,2}+r_{3,3}p_{3,1}
                                                                                            2p_{1,3}r_{3,3}-2r_{1,1}p_{1,3}-2r_{1,2}p_{2,3}
где A = p_{2,3} p_{3,2} + p_{1,3} p_{3,1} + 1 - r_{1,2} - p_{3,1} r_{1,1} + p_{3,2} r_{1,2} + r_{3,3} p_{3,1}, B = -p_{1,3} p_{3,2}
+ p_{2,3} p_{3,1} - r_{1,1} + p_{3,2} r_{1,1} + p_{3,1} r_{1,2} - r_{3,3} p_{3,2}
1.3.5.
                                                                                        0
           A p_{1.3}p_{3.2}-p_{2.3}p_{3.1}-p_{3.1}r_{1.2}-p_{3.2}r_{1.1}+r_{3.3}p_{3.2}
           B p_{2,3}p_{3,2}+p_{1,3}p_{3,1}-1-p_{3,1}r_{1,1}+p_{3,2}r_{1,2}+r_{3,3}p_{3,1}
           0 0
                                                                                        2p_{1,3}r_{3,3}-2r_{1,1}p_{1,3}-2r_{1,2}p_{2,3}
где A = p_{2,3} p_{3,2} + p_{1,3} p_{3,1} - 1 - p_{3,1} r_{1,1} + p_{3,2} r_{1,2} + r_{3,3} p_{3,1}, B = p_{1,3} p_{3,2} + p_{2,3}
p_{3,1} + p_{3,2} r_{1,1} + p_{3,1} r_{1,2} - r_{3,3} p_{3,2}.
1.3.6.
           A p_{1,3}p_{3,2}-p_{2,3}p_{3,1}-p_{3,1}r_{1,2}-p_{3,2}r_{1,1}+r_{3,3}p_{3,2}
                                                                                        0
           B p_{2,3}p_{3,2}+p_{1,3}p_{3,1}+1-p_{3,1}r_{1,1}+p_{3,2}r_{1,2}+r_{3,3}p_{3,1}
                                                                                        0
                                                                                        2p_{1.3}r_{3.3}-2r_{1.1}p_{1.3}-2r_{1.2}p_{2.3}
где A = p_{2,3} p_{3,2} + p_{1,3} p_{3,1} + 1 - p_{3,1} r_{1,1} + p_{3,2} r_{1,2} + r_{3,3} p_{3,1}, B = p_{1,3} p_{3,2} + p_{2,3}
p_{3,1} + p_{3,2} r_{1,1} + p_{3,1} r_{1,2} - r_{3,3} p_{3,2}.
1.3.7.
```

A $p_{1,3}p_{3,2}-p_{2,3}p_{3,1}+r_{1,1}-p_{3,1}r_{1,2}-p_{3,2}r_{1,1}+r_{3,3}p_{3,2}$ 0

B $p_{2,3}p_{3,2}+p_{1,3}p_{3,1}-r_{1,2}-p_{3,1}r_{1,1}+p_{3,2}r_{1,2}+r_{3,3}p_{3,1}$ 0 $2p_{1,3}r_{3,3}-2r_{1,1}p_{1,3}-2r_{1,2}p_{2,3}$

где $A=p_{2,3}p_{3,2}+p_{1,3}p_{3,1}-r_{1,2}-p_{3,1}r_{1,1}+p_{3,2}r_{1,2}+r_{3,3}p_{3,1},$ $B=-p_{1,3}p_{3,2}+p_{2,3}p_{3,1}-r_{1,1}+p_{3,2}r_{1,1}+p_{3,1}r_{1,2}-r_{3,3}p_{3,2}.$

Список литературы

1. Chow B., Knopf D. The Ricci ow: an introduction. Mathematical Surveys and Monographs, V. 110. American Mathematical Society, Providence, RI, 2004.