### Радио, телевидение и современные решения в области элементной базы в связи

возрастает при наличии потенциала на диафрагме  $U_{d}$  и с уменьшением скорости нанесения  $V_{H}$ . Максимальное значение п было достигнуто при использовании в качестве рабочего газа паров толуола и  $V_{H} = 0,06$  нм/с. Режимы нанесения и результаты измерений приведены в табл.1. Таблица 1 – Режимы нанесения АПП и результаты измерений показателя преломления

| Рабочий | Остаточный        | Рабочий вакуум, | U <sub>a</sub> , | I <sub>p</sub> , | U <sub>д</sub> , | V <sub>н</sub> , | n    |
|---------|-------------------|-----------------|------------------|------------------|------------------|------------------|------|
| газ     | вакуум, мм рт.ст. | мм рт. ст.      | кВ               | мА               | В                | нм/с             |      |
| Метан   | $3 \cdot 10^{-5}$ | 3,3.10-4        | 2,9              | 90               | 0                | 0,18             | 1,62 |
| Метан   | $3 \cdot 10^{-5}$ | 3,3.10-4        | 2,8              | 90               | 90               | 0,15             | 1,82 |
| Пропан  | $4 \cdot 10^{-5}$ | 3,4.10-4        | 3,0              | 90               | 0                | 0,20             | 1,74 |
| Пропан  | $4 \cdot 10^{-5}$ | 3,4.10-4        | 3,0              | 90               | 40               | 0,19             | 1,76 |
| Толуол  | 3,5.10-5          | $1,2.10^{-4}$   | 3,0              | 20               | 0                | 0,06             | 2,12 |

Низкая V<sub>н</sub> при использовании толуола связана с низким давлением насыщенных паров. Наличие U<sub>д</sub> привело к некоторому снижению V<sub>н</sub>. Измерение пропускания осуществлялось с использованием спектрофотометра MC-121 PROSCAN. Установлено, что на  $\lambda$ =555 нм средняя величина пропускания составила 70–75%. Напряжение на диафрагме отсутствовало.

Электрофизические параметры пленок (удельное объемное сопротивление  $\rho_v$ , тангенс угла диэлектрических потерь tgδ, электрическая прочность  $E_{np}$ ) покрытий осуществляли путем измерения характеристик МДП –структуры. Результаты измерений приведены в табл.2.

|         |                     |                     |                    |                   |       | 2 1                   |
|---------|---------------------|---------------------|--------------------|-------------------|-------|-----------------------|
| Рабочий | Режимы нанесения    |                     |                    | ρ <sub>v</sub> ,  |       |                       |
| газ     | U <sub>a</sub> , кВ | I <sub>p</sub> , мА | U <sub>д</sub> , В | Ом см             | tgδ   | Е <sub>пр</sub> ,В/см |
| Метан   | 2,9                 | 90                  | 0                  | $1,45 \cdot 10^5$ | 0,080 | $1,9.10^{7}$          |
| Метан   | 2,8                 | 90                  | 90                 | $1,52 \cdot 10^5$ | 0,073 | $2,2.10^{7}$          |
| Пропан  | 3,0                 | 90                  | 0                  | $1,07 \cdot 10^5$ | 0,077 | $1,26 \cdot 10^7$     |
| Пропан  | 3,0                 | 90                  | 40                 | $1,37 \cdot 10^5$ | 0,122 | $5,45 \cdot 10^{6}$   |
| Пропан  | 4,0                 | 450                 | 110                | 1,01.104          | 0,135 | $2,22 \cdot 10^{6}$   |
| Толуол  | 3,0                 | 20                  | 0                  | $2,83 \cdot 10^5$ | 0,059 | $1,42 \cdot 10^7$     |
|         |                     |                     |                    |                   |       |                       |

Таблица 2 – Электрофизические параметры покрытий из алмазоподобного углерода

Установлено, что полученные АПП обладали высокой электрической прочностью, что может позволить их применение в качестве изолирующих слоев.

# А.П.ТКАЧЕНКО<sup>1</sup>, А.В.САСКОВЕЦ<sup>1</sup>, Д.В.ГРИБ<sup>1</sup>

## ДИСКРЕТИЗАЦИЯ И ВОССТАНОВЛЕНИЕ АНАЛОГОВОГО СИГНАЛА ВО ВРЕМЕННО́Й ОБЛАСТИ

<sup>1</sup>Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники », г. Минск, Республика Беларусь

Обычно теорему отсчетов обосновывают и объясняют на частотном языке, однако процессы дискретизации аналогового сигнала и его восстановления по дискретным отсчетам удобно и наглядно математически описывать и на временном языке с помощью разложения сигнала в ряд Котельникова.

Будем полагать, что аналоговый сигнал (в качестве примера возьмем телевизионный) дискретизируется с шагом  $\Delta t$ , который в соответствии с теоремой Котельникова – Найквиста равен  $\Delta t = T_{\pi} \leq 1/2F$ . Пусть выполняется теоретический предел (рис. 1, а)

$$\Delta t = \mathbf{T}_{\Pi} = 1/2F, \qquad (1)$$

где *F* – частота среза идеального ФНЧ на входе дискретизатора, которая и определяет высшую частоту спектра дискретизируемого сигнала.

Временно́е представление сигнала U(t) связано с комплексным спектром  $S(\omega)$  преобразованием Фурье. Учтем, что спектр  $S(\omega)$  ограничен значениями –  $F \dots + F$ , т.е.

полосой 2*F* и отличен от нуля  $S(\omega) \neq 0$  при  $-2\pi F \leq \omega \leq 2\pi F$  и равен нулю  $S(\omega) = 0$  при  $|\omega| > 2\pi F$ :

$$U(t) = \frac{1}{2\pi} \int_{-2\pi F}^{2\pi F} S(\omega) e^{j\omega t} d\omega$$
 (2)

Сначала найдем значение сигнала в дискретные моменты времени U(k/2F), а затем получим формулу для спектра  $S(\omega)$ , выраженного через отсчетные значения U(k/2F), и подставим ее в (2). Определим функцию U(t) для дискретных моментов времени  $t = k/2F = kT_{\pi}, k = 1, 2, 3...,$  следующих с шагом (1):

$$T(k/2F) = \frac{1}{2\pi} \int_{-2\pi F}^{2\pi F} S(\omega) e^{j\omega(k/2F)} d\omega$$
 (3)

Поскольку комплексный спектр задан на отрезке от -F до +F, его можно представить комплексным рядом Фурье

$$S(\omega) = \sum_{-\infty}^{\infty} C_{k} e^{-j\omega(k/2F)}, (4) \qquad \Gamma \mathcal{A} e \qquad C_{\kappa} = \frac{1}{2\pi} \cdot \frac{1}{2F} \int_{-2\pi F}^{2\pi F} S(\omega) e^{j\omega(k/2F)} d\omega$$
(5)

Сравнивая (5) и (3), видим, что коэффициенты разложения  $C_k$  пропорциональны отсчетам функции U(t) в дискретные моменты времени. Тогда сумма (4) выражается через отсчеты исходной функции

$$S(\omega) = \frac{1}{2F} \sum_{-\infty}^{\infty} U(k/2F) e^{-j\omega(k/2F)} .$$
 (6)

Это значение спектра подставим в (2) для определения исходной функции в любой момент времени, тогда

$$U(t) = \frac{1}{2\pi} \cdot \frac{1}{2F} \int_{-2\pi F}^{2\pi F} \left\{ \sum_{-\infty}^{\infty} U(k/2F) e^{-j\omega(k/2F)} \right\} e^{j\omega t} d\omega$$
 (7)

Изменив порядок суммирования и интегрирования, произведя интегрирование по круговой частоте  $\omega$ , а так же найдя значение интеграла, получим

$$U(t) = \sum_{-\infty}^{\infty} U(k/2F) \frac{\sin 2\pi F(t-k/2F)}{2\pi F(t-k/2F)} = U_1(t) + U_2(t) + U_3(t) + \dots$$
(8)

Зависимость (8) представляет аналитическую запись теоремы отсчетов: любая функция времени U(t) с ограниченным значением F спектром может быть представлена в виде бесконечной суммы, члены которой представляют собой произведение

$$U(k/2F)$$
 – отсчетов и  $(\sin 2\pi F\tau)/2\pi F\tau$  – функции отсчетов. (9)

При  $\tau \to 0$  из (9) следует неопределенность sin 0/0 для функции отсчетов. После ее раскрытия путем взятия производных имеем

$$\lim_{\tau \to 0} \left[ \left( \sin 2\pi F \tau \right)' / (2\pi F \tau)' \right] = \lim_{\tau \to 0} \left[ (2\pi F \cos 2\pi F \tau) / 2\pi F \right] \to 1$$
 (10)

Таким образом, в момент времени t = k/2F функция отсчетов принимает максимальное значение, равное 1, а в моменты времени  $t = (k \pm v)/2F$  при v = 1, 2, 3, ... функция отсчетов обращается в нуль (рис. 1, б).



а – аналоговый и дискретный сигналы; б, в – отклик идеального ФНЧ на

 $\delta$  – импульс и сумму  $\delta$  – импульсов с шагом  $T_{\pi}$ ; г, д, е – осциллограммы

сигналов – слагаемых ряда; ж – восстановленный сигнал Рисунок 1 – Разложение сигнала в ряд Котельникова Ширина главного лепестка функции отсчетов на нулевом уровне равна 1/F, а на уровне 0.5 - 1/2F. Отсюда следует, что минимальная длительность импульса по нулевому уровню, который может существовать на выходе селективной системы, например ФНЧ с  $f_{en} = F$ , равна 1/F. Напомним, что речь идет об идеальном ФНЧ, который нереализуем.

Следовательно, при воздействии суммы  $\delta$  – импульсов с шагом  $T_{d}$  на ФНЧ на его выходе получается постоянное напряжение (рис. 1, в). После дискретизатора амплитудные значения  $\delta$  – импульсов будут пропорциональны мгновенным амплитудам аналогового сигнала в дискретные моменты времени, а после ФНЧ – огибающая U(t) (рис. 1, ж) будет повторять форму аналогового сигнала (т.е. равна сумме  $U_1(t), U_2(t), U_3(t)$  и т.д. на рис. 1, г-е), что наглядно показывает физический смысл разложения U(t) в ряд Котельникова (8).

### ЛИТЕРАТУРА

1. Ткаченко, А. П. Цифровое представление сигналов изображения и звукового сопровождения: учеб. пособие / А. П. Ткаченко, П. А. Капуро, А. Л. Хоминич. – Минск: БГУИР. – 2003. – 56с.

Д.А.ХАТЬКОВ<sup>1</sup>, А.П.ТКАЧЕНКО<sup>1</sup>

### СНИЖЕНИЕ ПИК-ФАКТОРА В СИСТЕМЕ НАЗЕМНОГО ЦИФРОВОГО ТЕЛЕВИЗИОННОГО ВЕЩАНИЯ ПО СТАНДАРТАМ DVB-T/T2

<sup>1</sup>Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники», г. Минск, Республика Беларусь

В системах наземного цифрового телевизионного (ТВ) вещания (НЦТВ) по стандарту первого (DVB-T) и второго (DVB-T2) поколения используется квадратурная амплитудная модуляция (M-QAM) большего количества несущих (поднесущих) с ортогональным частотным их мультиплексированием (COFDM) для передачи группы цифровых ТВ программ в пределах полосы одного ТВ канала (7 или 8 МГц). Такой режим передачи совместно с введением защитного интервала обеспечивает системам НЦТВ минимальную чувствительность к многолучевому приему, обусловленному многочисленными отражениями электромагнитных волн (ЭМВ) в городских условиях и при мобильном приеме в отличие от стандарта ATSC, в котором используется 8 (или 16) -VSB соответственно в НЦТВ и кабельном ТВ.

В докладе обсуждается недостаток OFDM модуляции - большой пик-фактор (отношение пиковой мощности радиосигнала к средней – PAPR), как «расплата» за преимущества (как правило, крайне трудно обеспечить преимущества, не проиграв по другим параметрам) [1]. Для определённых символов OFDM фазы поднесущих могут оказаться одинаковыми, что даёт кратковременный пик излучаемой мощности. Поэтому усилитель мощности (УМ) в цифровых передатчиках должны иметь высокую линейность амплитудной характеристики (АХ) в широком динамическом диапазоне, что является причиной низкой эффективности таких УМ. Кроме того, если «всплески» пиковой мощности возникают достаточно часто неизбежно ограничение сигнала, т.е. нелинейные искажения и, как следствие, появление внутриполостных и внеполосных излучений. Первые из них могут являться причиной ухудшением достоверности приема. Вторые ухудшают электромагнитную обстановку.

Для качественного описания цифрового канала связи и качества модуляции используются такие показатели как BER и MER. BER определяется как отношение ошибочных бит к общему количеству переданных бит. MER это коэффициент, характеризующий расхождение между идеальной (вычисленной) и реальной позициями векторов в сигнальном созвездии.

Формула для вычисления PAPR имеет вид [2]:

$$PAPR = \frac{\max |x_{in}(t)|^{2}}{E\left[\frac{1}{T}\int_{-T/2}^{T/2} |x_{in}(t)|^{2} dt\right]} = \frac{\max |x_{in}(t)|^{2}}{P_{x_{-}in}}$$
(1)

где T - длительность OFDM символа, и  $P_{x_{in}}$  - средняя мощность сигнала  $x_{in}(t)$ .