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SCHEDULING PROBLEMS ON A SINGLE MACHINE

Minimizing Total Weighted Completion Time

with Uncertain Data: A Stability Approach1
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Abstract—A single-machine scheduling problem is investigated provided that the input data
are uncertain: The processing time of a job can take any real value from the given segment.
The criterion is to minimize the total weighted completion time for the n jobs. As a solution
concept to such a scheduling problem with an uncertain input data, it is reasonable to consider a
minimal dominant set of job permutations containing an optimal permutation for each possible
realization of the job processing times. To find an optimal or approximate permutation to be
realized, we look for a permutation with the largest stability box being a subset of the stability
region. We develop a branch-and-bound algorithm to construct a permutation with the largest
volume of a stability box. If several permutations have the same volume of a stability box,
we select one of them due to one of two simple heuristics. The efficiency of the constructed
permutations (how close they are to a factually optimal permutation) and the efficiency of the
developed software (average CPU-time used for an instance) are demonstrated on a wide set of
randomly generated instances with 5 ≤ n ≤ 100.

DOI: 10.1134/S0005117910100048

1. INTRODUCTION

Real-life scheduling problems may involve different forms of uncertainty and several approaches
are available in the OR literature to deal with uncertain scheduling problems. In the well-developed
stochastic approach [1], an uncertain processing time is assumed to be a random variable with a
probability distribution which is known a priori. If there is no sufficient information to charac-
terize a priori the probability distribution of each random processing time, other approaches are
needed [2, 3]. In particular, in a robust approach [4–6], the decision-maker prefers a schedule that
hedges against the worst-case scenario among all the possible realizations of the uncertain process-
ing times. The stability approach developed in [7–12] combines a stability analysis, a two-stage
scheduling decision framework, and the solution concept of a minimal dominant set of schedules.
A minimal dominant set of schedules being constructed in an off-line fashion optimally covers all
the possible scenarios: For any possible scenario such a set contains at least one schedule which is
optimal [9–11]. A minimal dominant set of schedules (which may be constructed off-line) allows
a scheduler to make an on-line decision whenever additional information on the realization of the
processing times becomes available [9, 10].

In this paper, we consider a single-machine scheduling problem with interval processing times
of n jobs which have to be processed. To solve this problem optimally (or approximately), we
use the notion of a stability box of a job permutation, which is similar to the well-known stability
ball [9, 12–14] used in post-optimality analysis. We use an exact formula for characterizing the

1 The research of the first author was supported by Belorussian Republican Foundation for Fundamental Research.
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MINIMIZING TOTAL WEIGHTED COMPLETION TIME 2039

stability box of any concrete job permutation in O(n log n) time and develop a fast branch-and-
bound algorithm to find a permutation with the largest volume of a stability box. We report
computational results on finding a permutation with the largest volume of a stability box and
satisfying one of two heuristic rules.

2. PROBLEM SETTING, NOTATIONS, STATE-OF-THE-ART

A set of n jobs J = {J1, J2, . . . , Jn}, n ≥ 2, has to be processed on a single machine, a weight
wi > 0 being given for job Ji ∈ J . The processing time pi of a job Ji ∈ J can take any real value
between a lower bound pLi > 0 and an upper bound pUi ≥ pLi , both bounds being known before
scheduling. The processing time pi may remain unknown until the completion of job Ji (such a
condition is realistic for most real-life scheduling problems).

Let T denote the set of all vectors p = (p1, p2, . . . , pn) of the possible processing times. The
set T is a closed rectangular box in the space Rn

+ of non-negative n-dimensional real vectors and
may be represented as the Cartesian product of the n segments [pLi , p

U
i ], i ∈ {1, 2, . . . , n}:

T =
{
p | p ∈ Rn

+, p
L
i ≤ pi ≤ pUi , i ∈ {1, 2, . . . , n}

}
= ×n

i=1

[
pLi , p

U
i

]
. (1)

A vector p ∈ T of the possible processing times is called a scenario.

Let S = {π1, π2, . . . , πn!} be the set of all permutations πk = (Jk1 , Jk2 , . . . , Jkn) of the jobs
J = {Jk1 , Jk2 , . . . , Jkn}. If both the permutation πk of the job set J and the scenario p ∈ T are
fixed, then Ci = Ci(πk, p) is the completion time of job Ji ∈ J in a semi-active schedule defined
by permutation πk. As usual, a schedule is called semi-active if no job Ji ∈ J can start earlier
without delaying the completion time of another job from set J and without altering the processing
permutation of the jobs J . The criterion under consideration is

∑
wiCi, which is the minimization

of the sum of the weighted job completion times:

∑
Ji∈J

wiCi(πt, p) = min
πk∈S

⎧
⎨
⎩

∑
Ji∈J

wiCi(πk, p)

⎫
⎬
⎭ ,

where permutation πt = (Jt1 , Jt2 , . . . , Jtn) ∈ S is optimal. By adopting the three-field nota-
tion α|β|γ introduced in [15], the above scheduling problem is denoted by 1|pLi ≤ pi ≤ pUi |

∑
wiCi.

Since the scenario p ∈ T may remain unknown before the completion of the jobs J , the com-
pletion time Ci of each job Ji ∈ J cannot be calculated at the stage of scheduling. Therefore,
problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi is not mathematically correct in the sense that the values of

the objective function γ =
∑

Ji∈J wiCi(πk, p) for different permutations πk ∈ S remain uncertain
before the completion of the job set J .

If a scenario p ∈ T is fixed before scheduling (i.e., equalities pLi = pUi = pi hold and segment
[pLi , p

U
i ] is degenerated into one point pi = [pi, pi] for each job Ji, i ∈ {1, 2, . . . , n}), then problem

1|pLi ≤ pi ≤ pUi |
∑

wiCi reduces to problem 1||∑wiCi with deterministic processing times, which
is mathematically correct and can be solved in O(n log n) time due to Smith [16].

In what follows, the problem α|pLi ≤ pi ≤ pUi |γ with the objective function γ = f(C1, C2, . . . , Cn)
is called uncertain in contrast to its counterpart, problem α||γ, which is called deterministic. While
an optimal sequencing rule for the deterministic problem 1||∑wiCi has been known since 1956
[16], its uncertain counterpart 1|pLi ≤ pi ≤ pUi |

∑
wiCi continues to attract the attention of the

researchers who develop different approaches for correcting and solving the uncertain problem
1|pLi ≤ pi ≤ pUi |

∑
wiCi (see [4–7, 11, 17, 18] among others). Next, we survey some recent results

for scheduling problems with uncertain processing times.
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2.1. Robust Approach

For problem 1|pLi ≤ pi ≤ pUi |γ, there usually does not exist a permutation of the jobs J that
remains optimal for all scenarios from T . So, an additional criterion is often introduced for the
problem 1|pLi ≤ pi ≤ pUi |γ with uncertain data, e.g., a robust schedule minimizing the worst-case
deviation from optimality was introduced in [4, 5] to hedge against data uncertainty.

In a robust approach, set T could contain a continuum of scenarios (i.e., T is the Cartesian
product of segments as defined in (1)) or set T could contain a finite number of scenarios:

T =
{
pj = (pj1, p

j
2, . . . , p

j
n) | pj ∈ Rn

+, j ∈ {1, 2, . . . ,m}
}
.

For a scenario p ∈ T , let γtp denote the optimal value of the objective function γ = f(C1, C2, . . . , Cn)
for problem 1||γ with the fixed scenario p. Permutation πt ∈ S is optimal, if

f(C1(πt, p), . . . , Cn(πt, p)) = γtp = min
πk∈S

γkp = min
πk∈S

f(C1(πk, p), . . . , Cn(πk, p)).

For any permutation πk ∈ S and any scenario p ∈ T , the difference γkp − γtp = r(πk, p) is called

the regret for permutation πk with the objective function value equal to γkp under scenario p. For
permutation πk ∈ S, value

Z(πk) = max{r(πk, p) | p ∈ T}

is called the worst-case absolute regret. The worst-case relative regret is defined as follows:

Z ′(πk) = max

{
r(πk, p)

γtp
| p ∈ T

}

provided that γtp �= 0. In [4,6], the problem 1|pLi ≤ pi ≤ pUi |
∑

Ci of minimizing the total completion
time (when all weights are equal: wi = 1 for each job Ji ∈ J ) has been considered. For a given
specific scenario pj ∈ T , the deterministic problem 1||∑Ci arises which can be solved using the
shortest processing times (SPT) rule [16]: Process the jobs of set J in non-decreasing order of their
processing times pji , Ji ∈ J . While the deterministic problem 1||∑Ci is solvable in O(n log n),
finding a permutation πt ∈ S of minimizing either the worst-case absolute regret Z(πt) or the worst-
case relative regret Z ′(πk) for the uncertain counterpart 1|pLi ≤ pi ≤ pUi |

∑
Ci is binary NP-hard

even for two possible scenarios (the corresponding proofs are published in [4,6], respectively). Only
a few very special cases are known to be polynomially solvable for minimizing the worst-case regret
for the problems α|pLi ≤ pi ≤ pUi |γ.

In [17], a 2-approximation algorithm has been developed to minimize the worst-case regret for
problem 1|pLi ≤ pi ≤ pUi |

∑
Ci. In [4, 6, 18], exact and heuristic algorithms have been developed

and tested to minimize the worst-case regret for the same problem.

2.2. Stability Approach

In what follows, we adopt the stability approach [7–9] for problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi

considering set T as the continuum of possible scenarios defined by (1). This stability approach
combines a stability analysis [9, 13, 14, 19–21], a two-stage scheduling decision framework (the off-
line planning stage and the on-line scheduling stage) [9,10,22], and the solution concept of a minimal
dominant set of semi-active schedules [7–9, 11, 12] (a minimal dominant set of permutations in the
case of problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi).

As a solution concept to an uncertain scheduling problem, it is reasonable to consider a minimal
dominant set of job permutations (semi-active schedules) defined as follows.
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MINIMIZING TOTAL WEIGHTED COMPLETION TIME 2041

Definition 1. A set of permutations (semi-active schedules) S(T ) ⊆ S is a minimal dominant
set for problem α|pLi ≤ pi ≤ pUi |γ, if

(a) for any fixed scenario p ∈ T , set S(T ) contains at least one permutation (semi-active sched-
ule), which is optimal for the deterministic counterpart α||γ associated with scenario p,

(b) property (a) is lost for any proper subset of set S(T ).

Due to condition (b), the above set S(T ) is a minimal dominant set with respect to inclusion.
Set S(T ) has been investigated in [7–9, 23–25] for the makespan criterion, and in [9, 12, 21, 24, 26]
for the total completion time criterion. Article [26] addresses the total completion time in a two-
machine flow-shop problem F2|pLi ≤ pi ≤ pUi |

∑
Ci. A geometrical algorithm has been developed

for solving the flow-shop problem Fm|pLi ≤ pi ≤ pUi , n = 2|∑Ci with m machines and two jobs.
For an uncertain flow-shop scheduling problem with two or three machines, sufficient conditions
were identified when a transposition of two jobs minimizes the total completion time. The work
of [24] deals either with the criterion Cmax or with

∑
Ci, where the processing times are fixed

while the setup times belong to the given segments. Dominance relations were identified for an
uncertain flow-shop scheduling problem with two machines. In [23], for a two-machine flow-shop
problem F2|pLi ≤ pi ≤ pUi |Cmax sufficient conditions were identified when a transposition of two
jobs minimizes Cmax. In [12], for a job-shop problem Jm|pLi ≤ pi ≤ pUi |

∑
Ci with m machines,

several exact and heuristic algorithms were developed by using the disjunctive graph model and
computational results have been reported.

Before presenting heuristic algorithms for problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi, we remind some
known results for the uncertain scheduling problem and for its deterministic counterpart.

In [16], it was proven that problem 1||∑wiCi can be solved in O(n log n) time due to the
following sufficient condition for the optimality of permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S:

wk1

pk1
≥ wk2

pk2
≥ . . . ≥ wkn

pkn
, (2)

where inequality pki > 0 holds for each job Jki ∈ J . Thus, problem 1||∑wiCi can be solved
to optimality by the weighted shortest processing times (WSPT) rule: Process the jobs in non-
increasing order of their weight-to-process ratio

wki
pki

. Inequalities (2) provide also a necessary

condition for the optimality of permutation πk ∈ S, see [27].

Theorem 1 [16, 27]. Permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S is optimal for the deterministic
problem 1||∑wiCi if and only if inequalities (2) hold.

A minimal dominant set S(T ) for problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi may be determined by using
the following dominance relation on the set of jobs J .

Definition 2. Job Ju dominates job Jv with respect to T (this will be denoted by Ju �→ Jv) if
there exists a minimal dominant set S(T ) for problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi such that job Ju

precedes job Jv in every permutation of set S(T ).

Definition 2 implies that a minimal dominant set constructed for the deterministic problem
1||∑wiCi associated with a scenario p ∈ T is a singleton, S(T ) = {πk}, where T = {p}. Hence,
relations Jk1 �→ Jk2 �→ Jk3 �→ . . . �→ Jkn−1 �→ Jkn with respect to T = {p} hold for the deterministic
problem 1||∑wiCi. The following claim has been proven in [11].

Theorem 2 [11]. For problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi, job Ju dominates job Jv with respect to T
if and only if

wu

pUu
≥ wv

pLv
. (3)
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The cardinality |S(T )| of a minimal dominant set S(T ) may be considered as a measure of
uncertainty for problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi. In the least uncertain case, a minimal dominant

set for problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi is a singleton, {πk} = S(T ), which is also a solution
to the deterministic counterpart 1||∑wiCi associated with any scenario p ∈ T . This case was
characterized in [11] as follows.

Theorem 3 [11]. For the existence of a dominant singleton S(T ) = {πk} = {(Jk1 , Jk2 , . . . , Jkn)}
for problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi, inequalities (4) are necessary and sufficient:

wk1

pUk1
≥ wk2

pLk2
;

wk2

pUk2
≥ wk3

pLk3
; . . . ;

wkn−1

pUkn−1

≥ wkn

pLkn
. (4)

The most uncertain case of problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi is that with |S(T )| = n!. This case
was also characterized in [11].

Theorem 4 [11]. Let pLi < pUi , Ji ∈ J . For the existence of a minimal dominant set S(T )
for problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi with a maximum cardinality |S(T )| = n!, inequality (5) is

necessary and sufficient:

max

{
wi

pUi
| Ji ∈ J

}
< min

{
wi

pLi
| Ji ∈ J

}
. (5)

In [28], the uniqueness of a minimal dominant set S(T ) was investigated. Let notation 1|p|∑wiCi

be used for indicating an individual problem (an instance) of the mass problem 1||∑wiCi associated

with a specific scenario p. We shall use the notation a = min

{
wi

pUi
| Ji ∈ J

}
and the notation

b = max

{
wi

pLi
| Ji ∈ J

}
. The criterion of the uniqueness of a minimal dominant set S(T ) uses the

following subsets Jr, r ∈ [a, b], of the job set J :

Jr =

{
Ji ∈ J | r =

wi

pUi
=

wi

pLi

}
. (6)

Theorem 5 [28]. For problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi, a minimal dominant set S(T ) is uniquely
determined if and only if there is no real r ∈ [a, b] such that |Jr| ≥ 2.

Theorem 6 [28]. Let S(T ) be a minimal dominant set for problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi.
For any permutation πk ∈ S(T ), there exists a scenario p ∈ T such that πk is the unique optimal
permutation for the instance 1|p|∑wiCi if and only if there is no r ∈ [a, b] such that |Jr| ≥ 2.

Theorem 4 is generalized in [28] as follows.

Theorem 7 [28]. Let there exist no real r ∈ [a, b] such that |Jr| ≥ 2. For the existence of a
minimal dominant set S(T ) for problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi attaining the maximum cardinality

|S(T )| = n!, inequality (5) is necessary and sufficient.

Since the cardinality of a minimal dominant set could range from 1 (Theorem 3) to n! (Theo-
rems 4 and 7), it is impossible to generate in polynomial time all the elements of set S(T ) and
so there is no polynomial algorithm for enumerating all permutations of a set S(T ). Fortunately,
due to Theorem 2, one can obtain a compact presentation of a minimal dominant set S(T ) for a
problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi in the form of a digraph (J ,A) with the vertex set J and the arc

set A. To this end, one can check condition (3) for each pair of jobs Ju and Jv from set J and
construct a digraph (J ,A) of the dominance relation on the set J as follows: Arc (Ju, Jv) belongs
to set A if and only if Ju �→ Jv. To construct the digraph (J ,A) takes O(n2) time.
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MINIMIZING TOTAL WEIGHTED COMPLETION TIME 2043

Theorem 8 [28]. Digraph (J ,A) constructed for problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi defines a strict
order relation on the set J if and only if there is no a real r ∈ [a, b] such that |Jr| ≥ 2.

If there exists a real r ∈ [a, b] with inequality |Jr| ≥ 2, then due to Theorem 5, there exist
at least two minimal dominant sets for problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi. The whole number of

minimal dominant sets for problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi was calculated in [28] as follows.

Theorem 9 [28]. If inequality |Jrq | ≥ 2 holds for each real rq ∈ {r1, r2, . . . , rm}, where integer
m ≥ 1 is maximal and rq ∈ [a, b], then the number k of the minimal dominant sets existing for
problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi is equal to

∏m
q=1 |Jrq |!. If m = 0, then k = 1.

From Theorems 5–9, it follows that the existence of sets Jrq with |Jrq | ≥ 2, rq ∈ {r1, r2, . . . , rm},
implies that a minimal dominant set S(T ) loses the useful properties: If there exists at least one
set Jrq which is not a singleton, then the binary relation A ⊆ J×J is not a strict order (Theorem 8);
a minimal dominant set is not uniquely determined (Theorem 5); the number of minimal dominant
sets existing for problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi may be very large (Theorem 9). Next, we show

how to overcome all these difficulties over set Jrq , |Jrq | ≥ 2, and how to use these sets while solving
a problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi (when no additional criterion is implied by the data uncertainty).

The size n of problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi will be reduced by the quantity |Jrq | − 1 for each
non-singleton Jrq via identifying a set of jobs Jrq in one job of them.

Due to Theorem 1, in any optimal permutation πl ∈ S generated by the instance 1|p|∑wiCi, all
the jobs of set Jrq ⊆ J must be located adjacently one by one: πl = (. . . , π(Jrq), . . .), where π(Jrq )
is a permutation of the jobs Jrq . Moreover, the order of the jobs {Jq(1), Jq(2), . . . , Jq(|Jrq |)} = Jrq in

permutation π(Jrq) does not influence the value of the objective function γ =
∑n

i=1wiCi calculated
for any permutation πk ∈ S of the form πk = (. . . , π(Jrq ), . . .) (since the processing time of
each job Jq(v) ∈ Jrq is fixed and the weight-to-process ratios are the same for all the jobs of
set Jrq). Therefore, while looking for an optimal permutation for any instance 1|p|∑wiCi generated
by the uncertain problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi via fixing a scenario p ∈ T , one can treat

all the jobs {Jq(1), Jq(2), . . . , Jq(|Jrq |)} = Jrq as one job with the numerical parameters (weight

and processing time) equal to those of any job of set Jrq . By choosing only one job from each
of such sets Jrq , rq ∈ {r1, r2, . . . , rm}, |Jrq | ≥ 2, the original instance of the uncertain problem
1|pLi ≤ pi ≤ pUi |

∑
wiCi can be transformed into an equivalent instance (let this instance be

denoted as 1∗|pLi ≤ pi ≤ pUi |
∑

wiCi) with a smaller cardinality of the set of jobs to be scheduled
(let this set be denoted as J ∗):

|J ∗| = |J | −
m∑
q=1

(|Jrq | − 1) = n+m−
m∑
q=1

|Jrq |.

In the following claim, 1∗|p|∑wiCi denotes the deterministic instance generated by the uncertain
instance 1∗|pLi ≤ pi ≤ pUi |

∑
wiCi via fixing a scenario p ∈ T .

Theorem 10 [28]. An instance 1∗|pLi ≤ pi ≤ pUi |
∑

wiCi is equivalent to the original instance
of the uncertain problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi in the sense that for any fixed scenario p ∈ T ,

an optimal permutation πk of the instance 1∗|p|∑wiCi is obtained from the corresponding optimal
permutation πt of the instance 1|p|∑wiCi of the original uncertain problem via deleting from
permutation πt all the jobs of set J \ J ∗.

Along with a smaller size, the equivalent instance 1∗|pLi ≤ pi ≤ pUi |
∑

wiCi has a unique minimal
dominant set S(T ) (due to Theorem 5). Consequently, S(T ) is a minimal dominant set with
respect to both inclusion and cardinality. The next useful property of the instance 1∗|pLi ≤ pi ≤
pUi |

∑
wiCi is that relation A ⊆ J × J is a strict order on the set of jobs J (due to Theorem 8)
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and the corresponding digraph (J ,A) has neither a loop nor a contour. Due to Theorem 6, for
any permutation πk ∈ S(T ), there exists a scenario p ∈ T such that πk is the unique optimal
permutation for the instance 1|p|∑wiCi.

Instead of using the digraph (J ,A), one can adopt a reduction G = (J ,A0) of digraph (J ,A),
which is obtained from the latter via deleting the transitive arcs A \ A0.

2.3. Properties of a Stability Box and Region

In [28], the notion of a stability box of a permutation πk ∈ S has been introduced. A stability
box is a subset of the stability region [9, 12,13,20] and is similar to a stability ball investigated in
the papers [9, 12–14, 20] within a post-optimality analysis of the optimal permutation constructed
for the deterministic scheduling problem.

Definition 3. A maximal closed rectangular box SB(πk, T ) = ×n
i=1[li, ui] ⊆ T is called a stability

box of permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S with respect to T , if for each i ∈ {1, 2, . . . , n}, per-
mutation πk remains optimal for the instance 1|p′|∑wiCi with any scenario p′ = (p′1, p′2, . . . , p′n) ∈{
×n

j=1,j �=i[p
L
kj
, pUkj ]

}
× [lki , uki ]. If there does not exist a scenario p ∈ T such that permutation πk

is optimal for the instance 1|p|∑wiCi, then SB(πk, T ) = ∅.
In Definition 3, the maximality of a rectangular box SB(πk, T ) means that for each position

i ∈ {1, 2, . . . , n} in permutation πk, the lower bound lki (the upper bound uki) for the variation of
the processing time pki of job Jki , which is located at position i in permutation πk, preserving the
optimality of permutation πk has to be as small (as large) as possible provided that the processing
time of each other job Jkj , j ∈ {1, 2, . . . , n} \ {i}, may vary independently and simultaneously

within the whole given segment [pLkj , p
U
kj
]. We call the dimension of a stability box SB(πk, T ) the

cardinality |Nk| of the set {pki | ki ∈ Nk} of the processing times in the scenario p′ which may
be modified in vector p with preserving the optimality of permutation πk. The cardinality |Nk| of
set Nk is an important characteristic of the stability box SB(πk, T ): it defines the maximum number
of the processing times in p′ which are modifiable in scenario p without violating the optimality of
permutation πk. Note that the processing times of the remaining set {p′kj | kj ∈ N \Nk} have to

remain the same as those in the original vector p : p′kj = pkj .

In [12,13,20], the stability region of an optimal semi-active schedule was investigated for a job-
shop problem with the mean flow time and the makespan criterion, respectively. Using the notations
introduced for problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi, the stability region K(πk, T ) of a permutation

πk ∈ S with respect to T is defined as follows:

K(πk, T ) =

⎧⎨
⎩p | p ∈ T,

∑
Ji∈J

wiCi(πk, p) = min
πl∈S

⎧⎨
⎩

∑
Ji∈J

wiCi(πl, p)

⎫⎬
⎭

⎫⎬
⎭ . (7)

Definition 3 of a stability box and definition (7) of a stability region imply inclusion

SB(πk, T ) ⊆ K(πk, T ).

In our heuristic algorithms for solving problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi, we shall use the stability
box in spite of set SB(πk, T ) being often a proper subset of set K(πk, T ). We can argue for such a
choice by the simplicity of a stability box allowing us to provide a polynomial time for calculating
SB(πk, T ) for a permutation πk ∈ S(T ).

In [28], the following properties of the stability box and the stability region have been derived.

Theorem 11 [28]. The stability box SB(πk, T ) (the stability region K(πk, T )) is empty, if and
only if there is no scenario p ∈ T such that permutation πk is optimal for the instance 1|p|∑wiCi.
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Theorem 12 [28]. There exists a scenario p ∈ T such that permutation πk = (Jk1 , . . . , Jkn) ∈ S
is optimal for the instance 1|p|∑wiCi if and only if there is no job Jki , i ∈ {1, 2, . . . , n− 1}, such
that inequality

wki

pLki
<

wkj

pUkj
(8)

holds for at least one job Jkj , where j ∈ {i+ 1, i + 2, . . . , n}.

Theorem 13 [28]. The stability box SB(πk, T ) (stability region K(πk, T )) is empty, if and only
if there exists job Jki, i ∈ {1, 2, . . . , n − 1}, such that inequality (8) holds for at least one job Jkj ,
where j ∈ {i+ 1, i+ 2, . . . , n}.

Definitions 3 and (7) imply the following claim.

Theorem 14 [28]. If there exists exactly one scenario p ∈ T such that permutation πk ∈ S is
optimal for the instance 1|p|∑wiCi, then SB(πk, T ) = {p} = K(πk, T ).

Theorem 15 characterizes another extreme case for the stability box and the stability region.

Theorem 15 [28]. SB(πk, T ) = T = K(πk, T ) if and only if inequalities (4) hold.

As follows from Definition 1, one can restrict the search by the permutations of a minimal
dominant set S(T ) while solving problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi exactly. For each permutation

of set S(T ), both the stability region and the stability box are non-empty, i.e., the following claim
holds.

Theorem 16 [28]. If πk ∈ S(T ), then SB(πk, T ) �= ∅ and K(πk, T ) �= ∅.

In the next subsection, we present an O(n log n)-algorithm STABOX for calculating the stability
box SB(πk, T ) for a permutation πk = (Jk1 , . . . , Jki−1

, Jki , Jki+1
, . . . , Jkn) ∈ S. In Section 3, we show

how to use this algorithm for solving approximately problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi.

2.4. Polynomial Algorithm for Calculating the Stability Box

Due to the additivity of the objective function γ =
∑

wiCi, in order to find a rectangular
box SB(πk, T ), it is sufficient to calculate the maximal range of the possible variation of each
processing time pki , i ∈ {1, 2, . . . , n}, which preserves the optimality of permutation πk. Let a
“possible variation” [lki , uki ] (respectively, [Lki , Uki ]) of the processing time pki (of the weight-to-
process ratio of job Jki) mean the following. If πk is an optimal permutation for the instance
1|p|∑wiCi with p = (p1, p2, . . . , pn) ∈ T , then permutation πk remains optimal for any instance
1|p′|∑wiCi with p′ = (p′1, p′2, . . . , p′n) ∈ T , where p′t = pt for each t �= ki and pki ∈ [lki , uki ]
(respectively,

wki
pki

∈ [Lki , Uki ]). It is easy to show that the lower bound d−ki for the maximal possible

variation of the weight-to-process ratio is as follows:

d−ki = max

{
wki

pUki
, max
i<j≤n

{
wkj

pLkj

}}
. (9)

The upper bound d+ki for the maximal possible variation of the weight-to-process ratio is as follows:

d+ki = min

{
wki

pLki
, min

1≤j<i

{
wkj

pUkj

}}
. (10)

In [28], the following claims have been proven.
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Theorem 17 [28]. If there is no job Jki , i ∈ {1, 2, . . . , n− 1}, in permutation πk = (Jk1 , Jk2 , . . . ,
Jkn) ∈ S such that inequality (8) holds for at least one job Jkj , where j ∈ {i+1, i+2, . . . , n}, then

SB(πk, T ) = ×d−i ≤d+i

[
wki

d+ki
,
wki

d−ki

]
×

{
×d−j >d+j

[pkj , pkj ]

}
. (11)

Otherwise, SB(πk, T ) = ∅.

If d−j > d+j , then there is no possible variation of the weight-to-process ratio for job Jkj . The
dimension |Nk| of the stability box SB(πk, T ) is equal to the number of jobs Jki ∈ J for which the
opposite inequality d−i ≤ d+i holds. The maximal possible variation of the weight-to-process ratio
[Lki , Uki ] of such a job Jki is not empty.

Corollary 1 [28]. If SB(πk, T ) �= ∅ for problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi with the scenario set T ,
then the singleton {πk} is a minimal dominant set for problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi with the

scenario set T ∗ = SB(πk, T ).

The following O(n log n)-algorithm is based on Theorem 17.

Algorithm STABOX [28]

Input: Segments [pLi , p
U
i ], weights wi, Ji ∈ J ; permutation πk=(Jk1 , Jk2 , . . . , Jkn) ∈ S.

Output: Stability box SB(πk, T ).
Step 1: Construct the list L of fractions

wki

pL
ki

, i = 1, 2, . . . , n, in non-increasing order;

find the position ri of element
wki

pL
ki

in the list L, let Lri =
wki

pL
ki

.

Step 2: Construct the list U of fractions
wki

pU
ki

, i = 1, 2, . . . , n, in non-decreasing order;

find the position mi of element
wki

pU
ki

in the list U , let Umi =
wki

pU
ki

.

Step 3: Construct the list U0 of fractions
wki

pU
ki

, i = 1, 2, . . . , n, in non-increasing order;

find the position ti of element
wki

pU
ki

in the list U0, let U0
ti =

wki

pU
ki

.

Step 4: FOR i = 1 to n DO

set U0 := U0 \ {U0
ti}; test inequality

wki

pL
ki

< U0
1 ,

where U0
1 is the first (maximal) element in the list U0;

IF inequality
wki

pL
ki

< U0
1 holds

THEN SB(πk, T ) = ∅ STOP.

END FOR

Step 5: FOR i = 1 to n− 1 DO

set L := L \ {Lri}; calculate d−ki = max

{
wki

pU
ki

, L1

}
,

where L1 is the first (maximal) element in the list L.

END FOR

Step 6: FOR i = n to 2 DO

set U := U \ {Umi}; calculate d+ki = max

{
wki

pU
ki

, U1

}
,

where U1 is the first (minimal) element in the list U .

END FOR
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Step 7: Set d−kn :=
wkn

pU
kn

; d+k1 :=
wk1

pL
k1

.

Step 8: FOR Ji ∈ J DO

IF d+ki < d−ki THEN processing time pki has to be fixed in SB(πk, T )

ELSE

[
wki

d+
ki

,
wki

d−
ki

]
is the maximal range of the possible variation of pki .

END FOR

Step 9: Set SB(πk, T ) := ×d−i ≤d+i

[
wki

d+
ki

,
wki

d−
ki

]
× {×d−j >d+j

[pkj , pkj ]} STOP.

Formula (11) is valid for any permutation πk ∈ S with a non-empty stability box, e.g., for each
permutation in the set S(T ), since the following claim holds.

Theorem 18 [28]. If πk ∈ S(T ), then SB(πk, T ) �= ∅ and K(πk, T ) �= ∅.

In Section 3, we show how to solve problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi approximately using a
minimal dominant set S(T ) and a permutation πk ∈ S(T ) with the stability box SB(πk, T ) of
maximal relative volume. The permutation, which has the largest relative volume of the stability
box, seems to be the most attractive one among the permutations of a minimal dominant set.

3. A PERMUTATION WITH THE LARGEST STABILITY BOX

The above results motivate us for developing a branch-and-bound algorithm for solving problem
1|pLi ≤ pi ≤ pUi |

∑
wiCi approximately. Intuitively, a permutation with a larger volume of the

stability box is better than that with a smaller volume of the stability box. For simplicity, the
presentation of the algorithm will be based on the following example.

3.1. Example

The input data for the example of problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi are given in columns 1–4 of
Table 1.

For each pair of jobs Ju ∈ J ∗ and Jv ∈ J ∗, we check condition (3) as follows:

w1

pU1
= 80 ≥ 50 =

w3

pL3
;

w1

pU1
= 80 ≥ 40 =

w4

pL4
;

w2

pU2
= 60 ≥ 50 =

w3

pL3
;

w2

pU2
= 60 ≥ 40 =

w4

pL4
;

w4

pU4
= 40 ≥ 40 =

w5

pL5
;

w4

pU4
= 40 ≥ 40 =

w6

pL6
.

Thus, condition (3) is satisfied for the following pairs of ordered jobs: {J1, J3}, {J1, J4}, {J2, J3},
{J2, J4}, {J4, J5}, {J4, J6}. Due to Theorem 2, the following relations hold: J1 �→ J3, J1 �→ J4,
J2 �→ J3, J2 �→ J4, J4 �→ J5, J4 �→ J6. A minimal dominant set S(T ) is defined by the digraph

Table 1. Data for the example

1 2 3 4 5 6 7 8 9 10

i pLi pUi wi
wi

pL
i

wi

pU
i

d−i d+i
wi

d+
i

wi

d−
i

1 4 5 400 100 80 90 100 4 4 4
9

2 6 9 540 90 60 60 80 6 3
4 9

3 4 10 200 50 20 40 50 4 5
4 6 6 240 40 40 40 40 6 6
5 3 4 120 40 30 40 20 – –
6 4 16 160 40 10 10 20 8 16
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Fig. 1. The reduction of digraph G = (J ,A) defining a unique minimal dominant set S(T ).

G = (J ,A) (the reduction of this digraph is represented in Fig. 1). Due to Theorem 5, a minimal
dominant set is unique for this example.

3.2. Branch-and-bound Algorithm

For finding a permutation with the largest relative volume of a stability box, we develop a
tree-like algorithm called MAXSTABOX. Let T = (V,E) denote the solution tree, where V is the
set of vertices and E is the set of edges. The solution tree T = (V,E) constructed for the above
example is represented in Fig. 2. Each vertex of the solution tree T = (V,E) is a permutation
πk,m = (Jk1 , Jk2 , . . . , Jkm) ∈ V , 1 ≤ m ≤ n, of some jobs from set J . Edge [πk,m, πl,m+1] belongs
to set E, if permutation πl,m+1 = (Jl1 , Jl2 , . . . , Jlm+1), m ≤ n− 1, was obtained from permutation
πk,m = (Jk1 , Jk2 , . . . , Jkm), i.e., equality Jki = Jli holds for each index i ∈ {1, 2, . . . ,m}.

The root of the solution tree T = (V,E) is the empty permutation (we denote the empty
permutation by π∗,0). The search process is started with the solution tree defined as follows:

T := ({π∗,0}, ∅).

The set of vertices of rank h = 1 in the solution tree is defined by the set of jobsX(h) ⊆ J , which
have no predecessors in the digraph G = (J ,A). In the above example, we obtain X(h) = {J1, J2}
since both jobs J1 and J2 have no predecessors in the digraph G = (J ,A) (see Fig. 1).

In the first iteration, the solution tree T = (V,E) for the example is constructed as follows:

V :=
{
π∗,0, π1,1 = (J1), π

2,1 = (J2)
}
, E :=

{
[π∗,0, (J1)], [π∗,0, (J2)]

}
.

This means that either job J1 or job J2 may be located at the first position in the desired permu-
tation with the largest relative volume of a stability box.

The set of vertices of rank h = 2 in the solution tree is defined by the set of jobs X(h), which
have no predecessors in the digraph obtained from G = (J ,A) after deleting the vertex of set
X(h − 1) = X(1).
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Fig. 2. Solution tree T = (V,E) constructed for the example.
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In the second iteration, the solution tree T = (V,E) for the example is constructed as follows:

V :=
{
π∗,0, π1,1 = (J1), π

2,1 = (J2), π
3,2 = (J1, J2), π

4,2 = (J2, J1)
}
,

E :=
{
[π∗,0, (J1)], [π∗,0, (J2)], [(J1), (J1, J2)], [(J2), (J2, J1)]

}
.

The whole solution tree is constructed similarly until a subset of the complete permutations
πk,n = (Jk1 , Jk2 , . . . , Jkn) ∈ V will be obtained. This subset of set S has to contain at least one
permutation of the set S(T ) with the largest relative volume of a stability box.

The rule for cutting a branch in the solution tree T = (V,E) is based on Theorem 19, where
VolSB(πk,m, T ) denotes the relative volume of the stability box SB(πk,m, T ).

Theorem 19. Let for vertices πk,m ∈ V and πl,m ∈ V , 1 ≤ m < n, the following conditions hold:

{Jk1 , Jk2 , . . . , Jkm} = {Jl1 , Jl2 , . . . , Jlm}, (12)

VolSB(πk,m, T ) ≥ VolSB(πl,m, T ). (13)

Then vertex πl,m ∈ V can be eliminated from further branching in the solution tree T = (V,E).

Proof. For each partial permutation πk,m = (Jk1 , Jk2 , . . . , Jkm) ∈ V with 1 ≤ m < n, one can
calculate the stability box SB(πk,m, T ) using equality (11) and calculate the value VolSB(πk,m, T )
as the product of the relative maximal possible variation of the weight-to-process ratio for all
jobs Jki , i ∈ {1, 2, . . . ,m}.

Assigning a job Jkm to position m in the permutation πk,m partitions the set of jobs J into two
subsets with respect to the complete permutation πu = (Jk1 , Jk2 , . . . , Jkm−1 , Jkm , Jkm+1 . . . , Jrm)∈ S.
One set is the set of jobs {Jk1 , Jk2 , . . . , Jkm−1} located before job Jkm , and the other set is the set of
jobs {Jkm+1 . . . , Jrm} located after job Jkm in the permutation πu. The maximal possible variation
of the weight-to-process ratio for job Jkm may be calculated using equalities (9) and (10). It is
clear that the result of this calculation does not depend on the order of the jobs within the set
{Jk1 , Jk2 , . . . , Jkm−1} and within the set {Jkm+1 . . . , Jrm}.

Thus, if equality (12) and inequality (13) hold for permutations πk,m ∈ V and πl,m ∈ V , then
permutation πl,m ∈ V can be eliminated from further branching in the solution tree. �

Returning to the example, we construct the solution tree presented in Fig. 2, where

π5,3 = (J1, J2, J3), π6,3 = (J1, J2, J4), π7,4 = (J1, J2, J3, J4),

π8,4 = (J1, J2, J4, J3), π9,4 = (J1, J2, J4, J5), π10,4 = (J1, J2, J4, J6),

π11,5 = (J1, J2, J3, J4, J5), π12,5 = (J1, J2, J3, J4, J6), π13,5 = (J1, J2, J4, J5, J3),

π14,5 = (J1, J2, J4, J5, J6), π15,5 = (J1, J2, J4, J6, J3), π16,5 = (J1, J2, J4, J6, J5),

π17,6 = (J1, J2, J3, J4, J5, J6), π18,6 = (J1, J2, J3, J4, J6, J5), π19,6 = (J1, J2, J4, J5, J6, J3).

It is easy to convince that for the vertices π3,2 = (J1, J2) ∈ V and π4,2 = (J2, J1) ∈ V of the
solution tree T = (V,E), condition (13) holds:

VolSB(π3,2, T ) ≥ VolSB(π4,2, T ).

Moreover, permutation π3,2 and permutation π4,2 include the same set {J1, J2} of jobs, i.e., con-
dition (12) also holds for the vertices π3,2 ∈ V and π4,2 ∈ V . Thus, due to Theorem 19, it is not
necessary to branch vertex π4,2 in the solution tree T = (V,E).

Due to a similar reason, there is no need to branch vertices π8,4 = (J1, J2, J4, J3) ∈ V , π13,5 =
(J1, J2, J4, J5, J3)∈ V , π15,5 = (J1, J2, J4, J6, J3)∈ V , and π16,5 = (J1, J2, J4, J6, J5) ∈ V (see Fig. 2).
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Fig. 3. Possible variations of the weight-to-process ratios for the permutation π1 are dashed.

Due to these eliminations of the vertices from the set used for branching in the solution tree
T = (V,E), only three permutations of set S are constructed in the solution tree, namely, permu-
tation π1 = π17,6 = (J1, J2, J3, J4, J5, J6) ∈ S, permutation π2 = π18,6 = (J1, J2, J3, J4, J6, J5) ∈ S
and permutation π3 = π19,6 = (J1, J2, J4, J5, J6, J3) ∈ S. Due to Theorem 19, it is sufficient to
examine only three permutations π1, π2 and π3 as candidates that have the largest volume of a
stability box.

Let us calculate a stability box SB(π1, T ) for permutation π1 = (J1, J2, J3, J4, J5, J6) ∈ V . The
intervals of the weight-to-process ratios for permutation π1 are defined in columns 5 and 6 in Table 1.
The values d−i and d+i defined by (9) and (10) are presented in columns 7 and 8 in Table 1. The
maximal possible variations of the weight-to-process ratios of jobs in permutation π1 are presented
in a coordinate system in Fig. 3. The abscissa axis is used for indicating the weight-to-process ratio
and the ordinate axis is used for presenting the jobs of set J ordered as in permutation π1. The
possible variations of the weight-to-process ratios of the jobs are dashed. The maximal possible
variations of the job processing times in permutation π1 are presented in columns 9 and 10 in
Table 1. Thus, the volume of the stability box SB(π1, T ) of permutation π1 is equal to (44

9 − 4)×
(9− 63

4 )× (5− 4)× (16− 8) = 131
3 . The dimension |N1| of the stability box SB(π1, T ) is equal to 5

since inequality d−5 > d+5 holds only for job J5 (see columns 7 and 8 in Table 1).

Similarly, one can calculate the volume and the dimension of the stability boxes for permutations
π2 ∈ V and π3 ∈ V . The volume of the stability box SB(π2, T ) of permutation π2 is equal to
(44

9 − 4)× (9− 63
4)× (5− 4) = 12

3 . The dimension |N2| of the stability box SB(π2, T ) is equal to 4.
The volume of the stability box SB(π3, T ) of permutation π3 is equal to (44

9 − 4)× (9− 63
4 ) = 12

3 .
The dimension |N3| of the stability box SB(π3, T ) is equal to 3.

Thus, the largest volume of the stability box has permutation π1 = π17,6 = (J1, J2, J3, J4, J5, J6).

Next, we present the scheme of the branch-and-bound algorithm, where initially set X(h) is the
set of vertices of digraph G = (J ,A) without predecessors, and V (h) is the set of vertices of the
solution tree which have to be branched.

Algorithm MAXSTABOX

Input: Segments [pLi , p
U
i ], weights wi, Ji ∈ J .

Output: Permutation πk=(Jk1 , Jk2 , . . . , Jkn) ∈ S with the largest VolSB(πk, T ).
Step 1: Construct the digraph G = (J ,A).
Step 2: Define the search tree T := ({π∗,0}, ∅).
Step 3: Set h = 1 and V (h) = X(h). Include the vertex set X(h) into the tree T .
Step 4: IF the rank of the tree T is equal to n THEN GOTO step 7 ELSE
Step 5: FOR πk,m ∈ V (h) DO restore the path μ(πk,m) from the root of tree T

to vertex πk,m;
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delete all vertices of path μ(πk,m) from digraph G = (J ,A);
each vertex of the obtained digraph defines a new vertex in the tree T ;
using (11) calculate the stability box for the partial job permutation.

END FOR
Step 6: Set h := h+ 1 and V (h) = ∅.

Test condition (13) for all leaves of the tree T for each pair for which condition (12)
holds.
IF both conditions of Theorem 19 hold THEN delete all such leaves from the tree T
except one with the largest volume of the stability box and include this vertex
into set V (h).
GOTO step 4.

Step 7: Using Algorithm STABOX, select the permutation πk with the largest VolSB(πk, T )
STOP.

The algorithm MAXSTABOX allows us to find a permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S with
the largest VolSB(πk, T ). However, there might be several permutations with the largest relative
volume of a stability box. In particular, if several adjacent jobs within permutation πk have
no possible variation of their weight-to-process ratio. To order such a set of jobs, we use one
of the following two heuristics: A lower-point scenario heuristic, which solves to optimality the
deterministic problem 1|pL|∑wiCi with the processing times pL = (pL1 , p

L
2 , . . . , p

L
n), and an upper-

point scenario heuristic, which solves to optimality the deterministic problem 1|pU |∑wiCi with
the processing times pU = (pU1 , p

U
2 , . . . , p

U
n ). Combining algorithm MAXSTABOX with the lower-

point scenario heuristic is called Algorithm SL, and that combined with the upper-point scenario
heuristic is called Algorithm UL.

4. COMPUTATIONAL RESULTS

Table 2 presents some computational results for testing randomly generated instances of problem
1|pLi ≤ pi ≤ pUi |

∑
wiCi with n ∈ {5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100}. We answer (by

experiments on a Laptop) the question of how large the relative error Δ of the value γkp∗ of the
objective function γ =

∑n
i=1 wiCi is obtained for the permutation πk with the largest relative

volume of the stability box SB(π1, T ) with respect to the actually optimal objective function
value γtp∗ calculated for the actual processing times p∗ = (p∗1, p∗2, . . . , p∗n) ∈ T :

Δ =
γkp∗ − γtp∗

γtp∗
.

Remind that the actual processing times are assumed to be unknown before scheduling. Algorithms
SL and UL were coded in C++ and were used to find a permutation πk ∈ S(T ) with the largest
relative volume of the stability box. An integer lower bound pLi and an integer upper bound pUi for
the possible real values pi ∈ R1

+ of the job processing times, pi ∈ [pLi , p
U
i ], were generated as follows.

First, an integer center C of the closed interval [pLi , p
U
i ] was generated using a uniform distribution

in the given range [L,U ]: L ≤ C ≤ U . Then the lower bound pLi for the possible processing time
was defined using the equality

pLi = C

(
1− δ

100

)
.

An upper bound pUi was defined using the equality

pUi = C

(
1 +

δ

100

)
.
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Table 2. Randomly generated instances with [L,U ] = [10, 1000] and wi ∈ [1, 50]

n δ |A| Average Average Exact solutions Average error Maximal error CPU

(%) (%) |Nk| VolSB(πk, T ) SL SU SL SU SL SU time

1 2 3 4 5 6 7 8 9 10 11 12

5 0.1 100 5 1 10 10 0 0 0 0 0.0
5 0.5 100 5 1 10 10 0 0 0 0 0.0
5 1 97.00 4.9 0.741 10 10 0 0 0 0 0.0
5 5 93.00 5 0.509 10 10 0 0 0 0 0.0
5 10 92.00 5 0.441 7 7 0.000931 0.000931 0.005934 0.005934 0.0
5 15 88.00 4.9 0.518 9 9 0.000381 0.000381 0.003811 0.003811 0.0
5 25 82.00 4.7 0.295 6 6 0.004766 0.004766 0.0326 0.0326 0.0
5 50 53.0 3.8 0.0441 5 5 0.010454 0.010454 0.058311 0.058311 0.0

10 0.1 100 10 1 10 10 0 0 0 0 0.0
10 0.5 99.33 9.9 0.757 10 10 0 0 0 0 0.0
10 1 98.89 10 0.677 9 9 0.000003 0.000003 0.000029 0.000029 0.0
10 5 95.78 9.8 0.258 9 9 0.000065 0.000065 0.000651 0.000651 0.0
10 10 93.11 9.7 0.0521 7 7 0.000158 0.000158 0.000961 0.000961 0.0
10 15 87.56 9.0 0.0254 3 3 0.002768 0.002768 0.00882 0.00882 0.0
10 25 71.11 6.5 0.0120 0 0 0.006057 0.006057 0.018855 0.018855 0.0
10 50 52.00 4.0 0.0139 0 0 0.02628 0.02628 0.05833 0.05833 0.0

15 0.1 99.90 15 0.982 10 10 0 0 0 0 0.0
15 0.5 99.62 15 0.806 10 10 0 0 0 0 0.0
15 1 98.48 14.9 0.337 7 7 0.000041 0.000041 0.000203 0.000203 0.0
15 5 96.10 14.5 0.0701 4 4 0.000273 0.000273 0.001192 0.001192 0.0
15 10 88.00 11.7 0.00690 2 2 0.001158 0.001158 0.004991 0.004991 0.0
15 15 84.29 10.5 0.00225 2 2 0.002474 0.002474 0.005859 0.005859 0.0
15 25 78.57 7.8 0.00371 1 1 0.006385 0.006385 0.017376 0.017376 0.0
15 50 54.38 3.8 0.0469 0 0 0.025886 0.026099 0.050611 0.050611 0.0

20 0.1 99.95 20 0.901 10 10 0 0 0 0 0.0
20 0.5 99.63 20 0.553 8 8 0.000003 0.000003 0.000029 0.000029 0.0
20 1 99.05 19.8 0.250 6 6 0.000019 0.000019 0.000112 0.000112 0.0
20 5 94.58 17.7 0.000272 1 1 0.000479 0.000479 0.001646 0.001646 0.0
20 10 88.26 13.6 0.000806 0 0 0.001955 0.001955 0.006086 0.006086 0.0
20 15 87.11 13.2 0.000130 1 1 0.002976 0.002976 0.008585 0.008544 0.0
20 25 70.89 6.8 0.0285 0 0 0.009162 0.009162 0.015119 0.015119 0.0
20 50 47.95 3.5 0.0437 0 0 0.049569 0.04958 0.135189 0.135295 3.3

30 0.1 99.89 29.9 0.699 8 8 0.000002 0.000002 0.000008 0.000008 0.0
30 0.5 99.53 29.3 0.255 6 6 0.000005 0.000005 0.000023 0.000023 0.0
30 1 98.78 29.3 0.00608 5 5 0.000021 0.000021 0.000097 0.000097 0.0
30 5 94.76 24.0 0.000001 0 0 0.000409 0.000412 0.00143 0.001469 0.0
30 10 89.17 16.5 0.00003 0 0 0.001823 0.001823 0.004153 0.004153 0.0
30 15 85.15 14.0 0.000298 0 0 0.00396 0.003976 0.007035 0.007035 0.1
30 25 75.17 6.5 0.0114 0 0 0.0069 0.006895 0.011764 0.011716 0.3
30 50 63.45 3.0 0.00031 0 0 0.041807 0.041807 0.041807 0.041807 1.0

40 0.1 99.92 39.9 0.699 10 10 0 0 0 0 0.0
40 0.5 99.38 39.0 0.0818 5 5 0.000009 0.000009 0.00003 0.00003 0.0
40 1 98.90 38.7 0.00206 1 1 0.000017 0.000019 0.00005 0.000064 0.0
40 5 94.73 28.1 ≈ 0 0 0 0.000438 0.000427 0.001186 0.0001186 0.0
40 10 90.08 19.0 ≈ 0 0 0 0.001663 0.00173 0.003472 0.003472 0.1
40 15 84.56 13.8 ≈ 0 0 0 0.004143 0.004315 0.006127 0.006651 0.4
40 25 77.18 4.5 0.01076 0 0 0.009055 0.009055 0.012444 0.012444 1.0
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Table 2. (Contd.) Randomly generated instances with [L,U ] = [10, 1000] and wi ∈ [1, 50]

n δ |A| Average Average Exact solutions Average error Maximal error CPU

(%) (%) |Nk| VolSB(πk, T ) SL SU SL SU SL SU time

1 2 3 4 5 6 7 8 9 10 11 12

50 0.1 99.92 49.4 0.612 7 7 0.000001 0.000001 0.000006 0.000006 0.1
50 0.5 99.46 48.9 0.00918 5 5 0.000005 0.000005 0.000031 0.000031 0.0
50 1 98.99 48.0 0.00029 1 1 0.000016 0.000016 0.000046 0.000046 0.0
50 5 94.75 31.8 ≈ 0 0 0 0.000455 0.00046 0.00073 0.00073 0.2
50 10 89.81 18.6 ≈ 0 0 0 0.001859 0.001856 0.002762 0.002741 0.6
50 15 85.42 13.7 ≈ 0 0 0 0.003332 0.00329 0.005219 0.005219 6.0
50 25 76.33 7.0 0.03944 0 0 0.007341 0.007546 0.007953 0.007953 10.0

60 0.1 99.92 59.3 0.583 8 8 ≈ 0 ≈ 0 0.000001 0.000001 0.1
60 0.5 99.58 59.0 0.00394 3 3 0.000004 0.000004 0.000023 0.000023 0.1
60 1 98.95 56.3 ≈ 0 0 0 0.000027 0.000028 0.000086 0.000086 0.1
60 5 94.69 33.7 ≈ 0 0 0 0.000385 0.000395 0.000978 0.000973 0.4
60 10 89.03 17.6 0.00117 0 0 0.001624 0.001608 0.002507 0.002507 5.5
60 15 84.60 10.9 0.00025 0 0 0.003656 0.003645 0.004973 0.004973 13.2
60 25 78.59 10.0 ≈ 0 0 0 0.012855 0.012783 0.012856 0.012784 29.0

70 0.1 99.93 69.4 0.307 8 7 ≈ 0 0.000001 0.000002 0.000002 0.1
70 0.5 99.42 66.4 ≈ 0 0 0 0.000008 0.000009 0.000018 0.000018 0.2
70 1 98.90 65.1 ≈ 0 0 0 0.000023 0.000023 0.000053 0.000053 0.3
70 5 95.10 35.7 ≈ 0 0 0 0.000402 0.000401 0.000652 0.000647 0.9
70 10 89.87 17.4 0.000009 0 0 0.001888 0.001893 0.002908 0.002904 10.7
70 15 84.72 12.0 ≈ 0 0 0 0.002139 0.002234 0.002139 0.002234 34.8
70 25 76.89 5.0 0.000003 0 0 0.008478 0.008449 0.008479 0.00845 361.0

80 0.1 99.95 79.4 0.467 7 7 ≈ 0 ≈ 0 0.000002 0.000002 0.3
80 0.5 99.44 76.4 ≈ 0 1 1 0.000006 0.000006 0.000017 0.000017 0.4
80 1 98.87 71.2 ≈ 0 0 0 0.000017 0.000017 0.00003 0.00003 0.5
80 5 94.43 34.1 ≈ 0 0 0 0.000471 0.000472 0.000756 0.000777 6.7
80 10 89.32 16.0 ≈ 0 0 0 0.00179 0.001771 0.002297 0.002304 106.5
80 15 85.38 11.0 0.00002 0 0 0.004137 0.004123 0.004137 0.004123 63.9

90 0.1 99.92 88.4 0.245 6 5 ≈ 0 ≈ 0 0.000001 0.000001 0.6
90 0.5 99.50 85.4 ≈ 0 0 0 0.000003 0.000003 0.000007 0.000007 0.7
90 1 98.99 81.6 ≈ 0 0 0 0.000021 0.000021 0.000038 0.000038 0.9
90 5 94.69 34.2 ≈ 0 0 0 0.00047 0.000469 0.00067 0.00067 8.2
90 10 87.57 15.0 ≈ 0 0 0 0.001945 0.001898 0.001945 0.001898 206.0
90 15 82.85 8.0 ≈ 0 0 0 0.003454 0.003328 0.003454 0.003328 2842.0

100 0.1 99.93 98.1 0.0888 4 5 ≈ 0 ≈ 0 0.000002 0.000001 1.0
100 0.5 99.49 94.8 ≈ 0 0 0 0.000006 0.000006 0.00001 0.00001 1.2
100 1 98.89 85.7 ≈ 0 0 0 0.000018 0.00002 0.000029 0.000029 1.6
100 5 94.98 37.2 ≈ 0 0 0 0.000465 0.000471 0.00067 0.000634 19.2
100 10 91.92 21.0 ≈ 0 0 0 0.001067 0.001063 0.001068 0.001064 46.0

As a result, the maximum possible relative error of the uncertain processing time was equal
to δ%. In the experiments, we tested instances of problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi with the relative

errors δ% of the random processing times defined by the values of δ ∈ {0.1, 0.5, 1.0, 5.0, 10.0, 15.0,
25.0, 50.0}. The same range [L,U ] for the varying center C of the closed interval [pLi , p

U
i ] was used,

namely: L = 10 and U = 1000. For each job Ji ∈ J , the weight wi ∈ R1
+ was uniformly distributed

in the range [1, 50]. In contrast to the actual processing time p∗i , the weight wi is known before
scheduling.
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For the experiments, we used a Laptop with Intel Pentium Dual Core with CPU 1.86 GHz
and RAM 2 GB. Table 2 represents the computational results for 85 series of randomly generated
instances of problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi. Each series contains 10 instances with the same

combination of n and δ. The number n of jobs in an instance is given in column 1. The maximum
possible error δ of the random processing times (in percentages) is given in column 2. Column 3
represents the average relative number |A| of the arcs in the digraph G = (J ,A) constructed using
the condition (3) of Theorem 2 (in percentages of the arc number in a complete circuit-free digraph
of order n):

|A| : n(n− 1)

2
× 100%.

Column 4 represents the dimension |Nk| of the stability box SB(πk, T ) of the permutation πk
with the largest relative volume of the stability box. In other words, |Nk| denotes the number of
jobs in permutation πk with d−i ≤ d+i , where d−i and d+i are defined by (9) and (10), respectively.

Column 5 represents the average value VolSB(πk, T ) of the permutations with the largest relative
volume of a stability box. If SB(πk, T ) = T for all the instances in the series, then column 5 contains
number one.

Column 6 and 7 represent the number of instances (from 10 ones in a series) for which a
permutation πk with the largest relative volume of the stability box provides an optimal solution
of an instance due to Algorithm SL and Algorithm UL, respectively.

The average (maximum) relative error Δ of the objective function value γkp∗ calculated for
permutation πk constructed by the branch-and-bound Algorithm MAXSTABOX with respect to
the optimal objective function value γtp∗ defined for the actual job processing times is given in
columns 8 and 9 for Algorithm SL (in columns 10 and 11 for Algorithm SU, respectively). The
CPU-time is given in column 12 for each of the Algorithm SL and Algorithm SU (since there is no
difference in their running times).

From the experiments, it follows that condition (4) of Theorem 3 holds for instances with a small
relative error δ%, δ ∈ {0.1, 0.5}, of the job processing times (see column 3) and for the series with
number 11. For each instance of these series, the permutation πk with the largest relative volume
of a stability box provides an optimal solution (columns 6, 7). If one algorithm outperforms the
other one, the corresponding number is presented in Table 2 in bold face.

5. CONCLUDING REMARKS

In today’s innovative, dynamic and very competitive marketplace, an enterprise needs to use
optimal scheduling decisions (a scheduling policy) as much as possible in spite of data uncertainty.
A schedule minimizing the worst-case regret (such a schedule may be constructed due to robust
scheduling [4, 5]) is generally useful for the worst-case scenario. However, the worst-case scenario
may be practically realized rather seldom. Indeed, it is unlikely that all the processing times assume
their worst values just for the factual schedule. Consequently, a schedule which is optimal for the
worst-case regret criterion may be not competitive for the actually realized scenario being often
very far from the worst-case one. Moreover, to find a schedule minimizing the worst-case regret
for the total flow time criterion

∑
Ci is an NP-hard problem even for two possible scenarios. It

should be noted that a lot of real-world scheduling problems deal with a large number of jobs to
be scheduled and the number of possible scenarios may be also large.

A stochastically optimal schedule for the E(
∑

wiCi) criterion (see [1]) in the class of non-
preemptive static list policies (i.e., a schedule minimizing the expected sum of the weighted com-
pletion times provided that the jobs are ordered at time zero according to a chosen priority list)
may be constructed by the weighted shortest processing time (WSEPT) rule: Process the jobs
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in non-increasing order of the ratio wi
E(pi)

, where E(pi) denotes the expected value of the random

processing time pi (see page 232 in [1]). However, a stochastically optimal schedule is factually effi-
cient, if the probability distribution of each random processing time is known before scheduling and,
moreover, if a sufficiently large number of scenarios will be realized in a rather closed scheduling
environment. Again, a stochastically optimal schedule may appear not competitive for the unique
scenario which is factually realized. Furthermore, an enterprise may have not enough chances to
compensate its loss caused by using a stochastically optimal schedule which is not optimal for the
factually realized scenario. Using stochastically optimal schedules for a sufficiently long time (and
for a large number of similar scenarios) may be practically impossible for an enterprise since other
competitors may be more productive via achieving better results on the market due to their better
scheduling policies.

Using the results of paper [28], we pick out in the scenario set T a subset of scenarios SB(πk, T )
for which permutation πk is definitely optimal. Due to assuming a reasonable restriction on the
job set J , set S(T ) turns out to be the unique minimal dominant set for an instance of problem
1|pLi ≤ pi ≤ pUi |

∑
wiCi. Consequently, a dominant set S(T ) being minimal with respect to inclusion

(see condition (b) of Definition 1) becomes minimal with respect to cardinality. A restriction on
the set J providing a singularity of set S(T ) implies the identification of appropriate jobs without
a loss of potentially optimal schedules and with decreasing the size n = |J | of the original problem
1|pLi ≤ pi ≤ pUi |

∑
wiCi under consideration. A minimal dominant set of permutations S(T ) ⊆ S is

uniquely determined for problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi if we choose only one job among a subset
of jobs with the same fixed weight-to-process ratio. In case there are several jobs with the same
fixed weight-to-process ratio, we can even decrease the number of jobs for the consideration in the
minimal dominant set. Thus, the condition for the uniqueness of S(T ) is not restrictive and even
useful. We used the notion of a stability box of permutation πk ∈ S, which is similar to a stability
ball [12–14, 20]. The stability box plays a similar role for the uncertain optimization problem as
the stability ball [13, 14, 19–21, 29–31] plays for a post-optimality analysis when the input data
and the optimal solution for them are already known and one has to know the credibility of the
solution at hand with respect to the possible variation of the input data within a maximal ball. We
used an exact formula proven in [28] for characterizing the stability box of any fixed permutation
πk ∈ S which runs in O(n log n) time. We developed a tree-like algorithm for finding a permutation
with the largest relative volume of a stability box and we presented computational results for
two combinations of a stability heuristic with a lower-point scenario heuristic and an upper-point
scenario heuristic. Further research on using a stability box for other uncertain scheduling problems
seems to be promising.
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