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1. INTRODUCTION

Currently, the complexity of modern computer systems and networks, such as embedded systems, sys�
tems�on�a�chip, and nets�on�a�chip is steadily increasing [1, 2]. Accordingly, the relevance of testing
these systems in order to detect errors in their software and faults in the hardware increases [3, 4]. The vari�
ety of software errors or hardware faults of modern computing systems and networks determines the use
of generic methodologies for testing them [5]. These methodologies primarily include modern modifica�
tions of random testing [6–12]. Existing varieties of random tests are combined under the principle of
controlled random testing [5]. These tests are constructed based on the calculation of certain characteris�
tics for the controlled selection of another random test set [5].

The use of controlled random tests is characterized by greater efficiency compared with other types of
tests that has been confirmed in practice many times [5–12]. It should be noted that the need to sort
potential candidates for test sets and calculate the numerical characteristics for them significantly
increases the complexity of constructing controlled random tests [5–7, 9, 12].

The purpose of this paper is to develop a method for constructing multiple controlled tests [13] based
on the initial controlled random test of a lesser length constructed by known methodologies [5–7, 9, 12].
The initial test is used to construct subsequent tests of multiple controlled random tests in the form of sim�
ple modifications that do not require further analysis or computational costs. The resulting multiple con�
trolled random tests can be interpreted as a single random test or used for periodic testing in applications
with time�limited test procedures.

2. ANALYSIS OF CONTROLLED RANDOM TESTS

All existing methods for constructing controlled random tests are based on the following assertion
[5, 7–10]. Each subsequent test set of the controlled random tests should be constructed such that it is as
different (distant) from all previously generated test sets as possible. In this case, the hypothesis is accepted
that for the two test sets with minimal difference the number of additional faults (errors) detected by the
second set is minimal and, conversely, for maximally different test sets the second one has the maximal
detection capacity [5, 7–10]. In this case, the efficiency of the second set is estimated by the number of
detected faults (errors) that are not detected by the first test set.

For methods of controlled random testing used to test digital devices and software with m inputs and
the space of input patterns consisting of 2m binary sets (vectors), the following definitions are correct [5, 7,
8, 14].
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Definition 1. The test (T) is a set of 2 ≤ q ≤ 2m test sets

{T0 , T1 , T2 , …, Tq – 1}, where Ti = ti, m – 1ti, m – 2 … ti, 2ti, 1ti, 0, ti,l ∈ {0, 1},

and m is the size of the test set in bits.

Definition 2. The controlled random test CRT = {T0, T1, T2, …, Tq – 1} is the test T that consists of randomly
generated test sets Ti, i ∈ {0,  1,  2, …,  q – 1} such that Ti meets a certain criterion or criteria derived from
previous test sets T0, T1, T2, …, Ti – 1.

The Hamming distance HD(Ti, Tj) and the Euclidean distance ED(Ti, Tj) are often used as the differ�
ence criteria of the test set Ti = ti, m – 1ti, m – 2 … ti, 2ti, 1ti, 0, where ti, l ∈ {0, 1}; i ∈ {0,  1,  2, …, q – 1}, from
the previous sets T0, T1, T2, …, Ti – 1 [5, 7–10]. These characteristics are defined for binary test sets Ti and
Tj consisting of m bits, for which the Hamming distance HD(Ti , Tj) is calculated as the weight w(Ti ⊕ Tj)

of the vector Ti ⊕ Tj, and ED(Ti, Tj) =  Obviously, minHD(Ti, Tj) = 0 and minED(Ti, Tj) = 0

are obtained for Ti = Tj, and maxHD(Ti , Tj) = m and maxED(Ti, Tj) =  at Tj = 

When constructing the set Ti, when i > 2, total values of distances for Ti with respect to previous sets
T0, T1, T2, …, Ti – 1 are used [5, 7–10, 12, 14]. Then, for the next set Ti the total Hamming distance
(THD(Ti)) and the total Euclidean distance (TED(Ti)) with respect to T0, T1, T2, …, Ti – 1 are calculated as

(1)

According to the methods of constructing controlled random tests discussed above, the new test set Ti

is selected so that difference metrics (1) take the maximum value [5, 7–10, 12, 14]. Note that difference
metrics (1) are characterized by a significant computational complexity, which increases with the growth
of the index i of the test set Ti . The computational complexity increases significantly because of the reduc�
tion of the number of potential candidates for tests with the increasing value of i [8, 15]. This is mainly
caused by the decrease in the search space for the new test set Ti, which is reduced because of the previous
procedures used to obtain test sets T0, T1, T2, …, Ti – 1, and, to a large extent, it depends on the threshold
values of characteristics of (1).

As shown in [8, 13], the minimum Hamming distance minHD(Ti, Tj) or the Euclidean distance
minED(Ti, Tj) is a more efficient metrics for the generation of a controlled random test. According to the
method of synthesis of tests discussed in [8], the subsequent test set Ti is selected from possible candidates
for the tests by the criterion of the maximum value

 or (2)

which provides the maximum distance (difference) of the test set Ti from all previously generated sets T0,
T1, T2, …, Ti – 1. If the maximum value of (2) is achieved, it also maximizes values THD(Ti) and TED(Ti)
according to (1) [13]. 

Let us define a multiple controlled test based on the methodology of single�step controlled random tests.

Definition 3. The multiple controlled random test MCRTr consists of r single�step controlled random
tests CRT(0), CRT(1), CRT(2), …, CRT(r – 1), each of which includes q test sets. In addition, the test
CRT(0) satisfies Definition 2 and subsequent tests CRT(i), i ∈ {1, 2, 3, …, r – 1} are constructed according
to certain algorithms such that each subsequent test CRT(i) meets a certain criterion or criteria derived
from previous tests CRT(0), CRT(1), CRT(2), …, CRT(i – 1).

Let us consider the Hamming distance and the Euclidean distance for two tests CRT(k) and CRT(l).
Initially, we note that the Hamming distance HD(CRT(k), CRT(l)), which is the same as the number of
distinct components Tk, i and Tl, i of the initial test CRT(k) and the constructed one CRT(l), can be consid�
ered as a prerequisite which the test CRT(l) should meet. It is clear that a necessary requirement in terms
of the maximum difference with which CRT(k) and CRT(l) should comply is the lack of matching sets Tk, i

and Tl, i in them, which is equivalent to the inequality Tl, i ≠ Tk, i, i ∈ {0, 1, 2, …, q – 1}.

The Euclidean distance for CRT(k) and CRT(l) is defined as 
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As for the total values of distances THD(Ti) and TED(Ti) according to (1) for the test set Ti, let us intro�
duce similar distance measures for the controlled random test CRT(i) as follows:

(3)

In order to use more effective criteria for estimating the quality of the controlled random test in the
construction of the test CRT(i), let us determine the maximum value of the Hamming distance
MHD(CRT(i)) and the maximum value of the Euclidean distance MED(CRT(i)) as follows: 

(4)

According to given metrics (4), the subsequent controlled random test CRT(i) is selected from the set
{CRT1(i), CRT2(i), …, CRTw(i)} of to test candidates based on the criterion of the maximum minimum
Hamming and Euclidean distances with respect to previously generated controlled random tests CRT(j) =
{CRT(0), CRT(1), …, CRT(i – 1)}. 

3. METHOD FOR GENERATING MULTIPLE CONTROLLED RANDOM TESTS

Let us use addition as the main operation in the construction of multiple random tests. It will make it
possible to provide the minimal computational complexity in the construction of multiple random tests
MCRTr. Indeed, all subsequent tests CRT(1), CRT(2), …, CRT(r – 1) can be easily constructed based on
CRT(0) by a single application of addition for each test set.

According to Definition 2, the controlled random test CRT consists of q test sets Ti, i ∈ {0, 1, 2, …, q – 1},
each of which represents a m�bit binary vector Ti = ti, m – 1ti, m – 2 … ti, 2ti, 1ti, 0, where ti,  l ∈ {0, 1}. Thus, test
sets Ti of the controlled random test CRT can be interpreted as g  = 2m�ary data Ti ∈ {0, 1, 2, …, 2m – 1}.
Then, for example, the test CRT = {0011, 0110, 1100, 0101, 1000} can be represented as a set of 16�ary
data CRT = {3, 6, 12, 5, 8} shown in the decimal system. If the initial test is CRT(k) = {T0(k), T1(k), T2(k), …,
Tq – 1(k)}, the ratio that is used to obtain a new test CRT(l) = {T0(l), T1(l), T2(l), …, Tq – 1(l)} takes the fol�
lowing form:

(5)

In the given ratio, the parameter d ∈ {1, 2, 3, …, 2m – 1} is used to achieve the difference between test
sets and, accordingly, between tests CRT(l) and CRT(k). This parameter is crucial for achieving the max�
imum difference of the test CRT(l) from the test CRT(k) in terms of the previously defined metrics. For
relation (5) the following proposition is true.

Proposition 1. If the test CRT(l) is derived from the initial test CRT(k) based on relation (5) for the
parameter d ∈ {1, 2, 3, …, 2m – 1}, then using the value 2m – d as the parameter for the test CRT(l) and
using the same relation (5) we obtain the initial test CRT(k). This proposition follows from the equality
d + 2m – dmod2m = 0.

Example 1. When m = 4 for the initial test CRT(k) = {3, 6, 12, 5, 8} and the parameter d = 8, according
to (5), we obtain CRT(l) = {11, 14, 4, 13, 0}. Using CRT(l) = {11, 14, 4, 13, 0} as the initial test and the
same value d = 8, we obtain the test CRT(k) = {3, 6, 12, 5, 8}, which corresponds to the Proposition 1. For
the same initial test CRT(k) = {3, 6, 12, 5, 8} and the other parameter d = 5, we will have a different result,
namely, CRT(l) = {8, 11, 1, 10, 13}.

Example 2. For the test CRT(k) = {3, 7, 0, 6, 2, 5, 1, 4} constructed for m = 3 and parameter d = 4,
according to (5), we find that CRT(l) = {7, 3, 4, 2, 6, 1, 5, 0}. For the same initial test and parameter d = 5, we
will have a different result, i.e., CRT(l) = {0, 4, 5, 3, 7, 2, 6, 1}. Note that, in the given example, tests
include various octal data values.

In the analysis of the above examples, in each of which two new tests obtained according to (5) are rep�
resented, the question arises as to which of these two tests is more effective for multiple testing. Thus, the
problem arises of determining the optimal parameter d when using the Euclidean distance as a quality
metric for multiple tests. Let us prove the theory, first, for ED(CRT(k) and CRT(l)), where the test CRT(l)
is obtained according to (5). 
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THEOREM 1. The Euclidean distance ED(CRT(k),CRT(l)) for tests CRT(k) and CRT(l), where
CRT(k) = {T0(k), T1(k), T2(k), …, Tq – 1(k)} consists of q = 2m m�bit nonrecurring randomly generated test
sets Ti(k) ∈ {0, 1, 2, …, 2m – 1}, and where test sets Ti(l) are obtained according to the expression

  is calculated as

(6)

Proof. The expression for the Euclidean distance ED(CRT(k),CRT(l)) becomes

Given the fact that test sets Ti(k) consist of q = 2m m�bit nonrecurring data {0, 1, 2,…, 2m – 1}, it is pos�
sible to draw the following conclusions. Values Ti(l) according to (5) in 2m – d cases will take the form of
Ti(l) = Ti(k) + d. As can be seen from Example 2, for d = 5 in 2m – d = 23 – 5 = 3 cases Ti(l) = Ti(k) + 5,
namely for Ti(k) = {0, 1, 2}. In addition, values Ti(l) according to (5) in d cases take the form Ti(l) =
Ti(k) + 2m – d. Taking into account the given relations the expression for the Euclidean distance will take
the form:

Which is what we set out to prove.
Example 3. The Euclidean distance for tests CRT(k) = {3, 7, 0, 6, 2, 5, 1, 4} and CRT(l) = {7, 3, 4, 2,

6, 1, 5, 0} from Example 2 is defined as ED(CRT(k), CRT(l)) = [(3 – 7)2 + (7 – 3)2 + (0 – 4)2 + (6 – 2)2 +

(2 – 6)2 + (5 – 1)2 + (1 – 5)2 + (4 – 0)2]1/2 =  The same value can be obtained based on Theorem

Values of Euclidean distances for the case m = 3 and possible values of d are given in Table 1.
For the above Theorem 1 we have the following corollary.
Corollary 1. The Euclidean distance value ED(CRT(k), CRT(l)) will take the maximum value when

d = 2m – 1, which corresponds to the solution of the equation 

The validity of this corollary is confirmed by the results shown in Table 1, where for d = 2m – 1 = 23 – 1 = 4

the Euclidean distance takes the maximum value of 

Corollary 2. The Euclidean distance ED(CRT(k), CRT(l)) obtained for the parameter d is equal to the
Euclidean distance of the parameter 2m – d, which follows from the equality

This property is illustrated by numerical values of the Euclidean distance shown in Table 1.

Corollary 3. The value of the Euclidean distance ED(CRT(k), CRT(l)) =  obtained
according to (6) for tests CRT(k) and CRT(l) consisting of q = 2m m�bit data {0, 1, 2, …, 2m – 1} can be used

as the mean Euclidean distance AED(CRT(k), CRT(l)) equal to  between tests CRT(k) and
CRT(l) that include q < 2m test sets.
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Table 1. Values of the Euclidean distance for m = 3

d 1 2 3 4 5 6 7

ED(CRT(k), CRT(l)) 56 96 120 128 120 96 56
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For Example 1 and test CRT(l) = {11, 14, 4, 13, 0} obtained based on the initial test CRT(k) = {3, 6, 12,
5, 8} at d = 8, according to (5), we find that

AED(CRT(k), CRT(l)) = 

Note that, for these tests, the Euclidean distance is strictly equal to its average value. Indeed, ED(CRT(k),

CRT(l)) = [(3 – 11)2 + (6 – 14)2 + (12 – 4)2 + (5 – 13)2 + (8 – 0)2]1/2 = 

Corollary 4. If the Euclidean distance ED(CRT(k), CRT(l)) between controlled random tests CRT(k)

and CRT(l) according to Theorem 1 is equal to  and, for tests CRT(k) and CRT(n),

ED(CRT(k), CRT(n)) =  then ED(CRT(l), CRT(n)) =  where dc = dl – dn mod 2m.

In accordance with Example 2 CRT(l) = {0, 4, 5, 3, 7, 2, 6, 1} and CRT(n) = {7, 3, 4, 2, 6, 1, 5, 0}, from
the Corollary 4, we obtain that dc = dl – dn mod 2m = 5–4 mod 23 = 1 and

ED(CRT(l), CRT(n)) =  

Using the classic definition of the Euclidean distance, we will obtain ED(CRT(l), CRT(n)) = [(0 – 7)2 +

(4 – 3)2 + (5 – 4)2 +(3 – 2)2 + (7 – 6)2 + (2 – 1)2 +(6 – 5)2 + (1 – 0)2]1/2 = 

4. THE CONSTRUCTION OF MULTIPLE CONTROLLED RANDOM TESTS

As a basis for constructing multiple controlled random tests

MCRTr = {CRT(0), CRT(1), CRT(2), …, CRT(r – 1)}, (7)

we use relation (5), which is characterized by the minimal computational complexity in obtaining subse�
quent tests CRT(1), CRT(2), …, CRT(r – 1) based on the initial one CRT(0). 

Then, the maximum minimum Hamming distance MHD(CRT(k), CRT(l)) and the maximum mini�
mum Euclidean distance MED(CRT(k), CRT(l)), k ≠ l ∈ {0, 1, 2, …, r  – 1}, according to (5), will be used
in the construction of multiple random tests (7) as measures of efficiency. 

Firstly, let us note that the maximum of MHD(CRT(k), CRT(l)) is achieved through the fulfillment of
the following condition: d1 ≠ d2 ≠ d3 ≠ … ≠ dr – 1. Indeed, as previously noted, a prerequisite in terms of the
maximum Hamming distance MHD(CRT(k), CRT(l)), with which the tests CRT(k) and CRT(l), k ≠ l ∈
{0, 1, 2, …, r – 1}, should comply, is the lack of matching test sets Ti(k) and Ti(l), i ∈ {0, 1, 2 , …, q – 1},
in them, which is equivalent to fulfilling the condition Ti(k) ≠ Ti(l). Since the test sets Ti(k) and Ti(l) are
interconnected by relation (5), the condition Ti(k) ≠ Ti(l) is fulfilled by using a nonzero value of the
parameter d ≠ 0 in order to obtain test sets Ti(l) of the test CRT(l) based on test sets Ti(k) of the initial test
CRT(k).

Let us successively consider multiple controlled random tests MCRTr of various multiplicity ranging
from double tests MCRT2 that consist of CRT(0) and CRT(1), where the second test CRT(1) is generated
based on the initial test CRT(0) according to (5). According to Corollary 1, the optimum value of the
parameter d in order to obtain CRT(1) is 2m – 1. In this case, the Euclidean distance between the tests
CRT(0) and CRT(1) takes the maximum value that maximizes the difference between these tests and the
maximum effectiveness of their joint application.

Let us prove the following theorem for tests MCRTr with the multiplicity r > 2.

THEOREM 2. The maximum value MHD(CRT(k),CRT(l)) with which the tests CRT(k) and CRT(l)
(k ≠ l ∈ {0, 1, 2, …, r – 1}) of the multiple controlled random test MCRTr that consists of r > 2 random
tests {CRT(0), CRT(1), CRT(2),…,CRT(r–1)}, each of which contains q ≤ 2m m�bit test sets, should comply
is achieved in the case of the maximum minimum value dk – dl (k ≠ l ∈ {0, 1, 2, …, r – 1}), and dk ≠ dl ∈
{1, 2, …, 2m – 1}.

Proof. When constructing the multiple controlled random test 

MCRTr = {CRT(0), CRT(1), CRT(2), …, CRT(r – 1)},

further tests CRT(1), CRT(2), …, CRT(r – 1) are constructed based on CRT(0) using relation (5) and a set
of parameters d ∈ {d1, d2, d3, …, dr – 1}. When r > 2, values of the parameter d are selected so as to maximize
the Hamming distance, namely, to satisfy the inequality d1 ≠ d2 ≠ d3 ≠ … ≠ dr – 1.

5 8 23 8–( )×× 320.=

320.

2 (2 )m m
l ld d−

2 (2 ),m m
n nd d− 2 (2 ),m m

c cd d−

3 32 (2 ) 2 1 (2 1) 56.m m
c cd d− = × × − =

56.

Би
бл
ио
те
ка

 БГ
УИ
Р



400

AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 49  No. 6  2015

YARMOLIK et al.

Assuming that q = 2m, it can be concluded that according to property 4 for two arbitrary tests CRT(k)

and CRT(l) (k ≠ l ∈ {0, 1, 2, …, r – 1}) the Euclidean distance is equal to the expression  for
the parameter d equal to dl – dk mod2m. When r > 2 for arbitrary pairs of parameters dl and dk (k ≠ l ∈ {0, 1,
2, …, r – 1}), minimum difference dl – dk mod2m between them is always greater than zero and less than

2m – 1. Note that the function of the Euclidean distance  is an increasing function for

 Then, we can conclude that the larger the minimum difference dl – dk mod2m, the greater the
value MED(CRT(k), CRT(l)), k ≠ l ∈ {0, 1, 2, …, r – 1} according to (5). Which is what we set out to prove.

Based on the proved theorem, we can conclude that for the general case of the multiple test MCRTr

optimal values of parameters d1, d2, …, dr – 1 are the values that divide the range of integers of 0 – 2m into
regular intervals and are calculated according to the following relation:

(8)

In the case of the triple random test MCRT3, in order to obtain the second CRT(1) and third CRT(2)
tests based on the initial test CRT(0), it is necessary to use optimum combinations of parameters d1 and d2

according to (8) used to obtain tests CRT(1) and CRT(2) according to (5). Correspondingly, for triple ran�
dom tests, 

 and 

For m = 3, we find that d1 = 3 and d2 = 5 and, for m = 4, d1 = 5 and d2 = 11.

Let us consider MCRT3 ={CRT(0), CRT(1), CRT(2)} when m = 4 using d1 = 5 and d2 = 11. The Euclid�
ean distance between the tests CRT(0) and CRT(1) is calculated as follows ED(CRT(0), CRT(1)) =

 Other values of Euclidean distances for an arbitrary value d are shown in
Table 2. According to this table, the value of the Euclidean distance is ED(CRT(0), CRT(2)) = 29.7. At the
same time, in accordance with Corollary of 4, the distance between tests CRT(1) and CRT(2) is deter�
mined for d equal to d2 – d1 = 11 – 5 = 6 as ED(CRT(1), CRT(2)) = 29.7.

The analysis of given values of Euclidean distances for the considered MCRT3 indicates that

MED (CRT(k), CRT(l)) = 29.7 for k ≠ l ∈{0, 1, 2} according to (4) and 
TED (CRT(2)) = ED(CRT(2), CRT(0)) + ED(CRT(2), CRT(1)) = 29.7 + 29.7 = 59.4 according to (3)

take the maximum value.
For the quadruple test MCRT4 = {CRT(0), CRT(1), CRT(2), CRT(3)} using (8), e.g., for m = 4, we find

that d1 = 4, d2 = 8 and d3 = 12. The values of the distances between any two tests MCRT4 are given in Table 3.

As can be seen from Table 3, the value MED(CRT(k), CRT(l)), k ≠ l ∈ {0, 1, 2, 3} for MCRT4 takes the
maximum possible value of 27.7.

2 (2 )m md d−

2 (2 )m md d−

10,2 .md −

=

2 0.5 , {1,2,..., 1}.
m

i
id i r

r

⎢ ⎥
= + ∈ −⎢ ⎥⎣ ⎦

1 1 2 3 0.5 ,md ⎢ ⎥= × +⎣ ⎦ 2 2 2 3 0.5 .md ⎢ ⎥= × +⎣ ⎦

16 5 (16 5) 880 29.7.× × − = =

Table 2. Values of the Euclidean distance for m = 4

d 1 2 3 4 5 6 7 8

ED(CRT(k), CRT(l)) 15.5 21.2 24.9 27.7 29.7 30.9 31.7 32.0

d 9 10 11 12 13 14 15 16

ED(CRT(k), CRT(l)) 31.7 30.9 29.7 27.7 24.9 21.2 15.5 0

Table 3. Values of the Euclidean distance for the test MCRT4

CRT(0) CRT(1) CRT(2) CRT(3)

CRT(0) – 27.7 32.0 27.7
CRT(1) 27.7 – 27.7 32.0

CRT(2) 32.0 27.7 – 27.7

CRT(3) 27.7 32.0 27.7 –
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5. EXPERIMENTAL

As a measure of the effectiveness of multiple controlled random test MCRTr we used the metric E(k, 2m)
introduced in [15] in order to construct subsequent test sets in the generation of the single�step controlled
random test. In the case of multiple tests similar characteristic for the subsequent test CRT(i) is formulated
and can be determined as follows.

Definition 4. The additional number of binary combinations at all possible k from 2m bits generated by
test sets of the test CRT(i) with respect to the plurality k from 2m binary combinations generated by previ�
ous tests of the multiple test CRT(0), CRT(1), CRT(2), …, CRT(i – 1) is the measure of effectiveness E(k, 2m)
for the subsequent controlled test CRT(i).

Obviously, the larger the value of this metric, the more effective is the subsequent controlled test
CRT(i), which together with the previous tests makes it possible to achieve maximum efficiency. Note that
in previous sections it was shown that in order to achieve the maximum efficiency of multiple controlled
random tests MCRTr the Euclidean distance for the test CRT(i) should be maximum in relation to previ�
ously generated tests CRT(0), CRT(1), CRT(2), …, CRT(i – 1).

The problem of testing storage devices was used for the comparative analysis of the effectiveness of
multiple controlled random tests MCRTr [13, 18]. First, let us consider a storage device that consists of
23 = 8 memory cells. In order to test it, we used the test CRT(0), which includes all possible three�bit
addresses generated according to the scheme of march tests [13, 18]. In the formation of the next address
the initial zero state of the memory cell is changed to a one state. Thus, the initial zero state of all cells of
the storage device is changed to the one state. Note that values ED(CRT(0), CRT(1)) for two tests CRT(0),
CRT(1) and m = 3 are given in Table 1. The test obtained according to (5) for all possible values of the
parameter d was used as the second controlled random test CRT(1). The resulting values of the metric E(k, 2m)
for the double test MCRT2 that consists of tests CRT(0) and CRT(1) are shown in Table 4.

As can be seen from given numerical values, the effectiveness of the double test is in strict accordance
with the values ED(CRT(0), CRT(1)) listed in Table 1. Indeed, for d = 1 and d = 7 the Euclidean distance

between CRT(0) and CRT(1) equals the minimum value  (Table 1), respectively, and the number of
additional binary combinations is minimum for all the values k. At the same time, for d = 4 and, conse�

quently, for the maximum value ED(CRT(0), CRT(1)) =  the number of additional combinations is
maximum (Table 4).

Similar results for a storage device that consists of 128 cells and k = 3 that confirm the efficiency of the
Euclidean distance as a measure of the effectiveness of the multiple test by the example of the double test
MCRT2 are shown in Fig. 1.

The results in Table 4 and Fig. 1 confirm the validity of theoretical provisions and, above all, the validity
of Theorem 1.

When using controlled random tests, in most cases, the number q of test sets is less than the total num�
ber of 2m m�bit input patterns [5, 7–10]. Accordingly, the validity of the results of Theorem 1 for the case
q < 2m and, above all, for Corollary 3 is significant for the proposed method of constructing controlled ran�

dom tests. According to this corollary, the Euclidean distance ED(CRT(k), CRT(l)) = 

56

128,

2 (2 )m md d−

Table 4. Estimation of the effectiveness of the double test for the storage device consisting of eight memory cells
(2m = 8) for k = 3, 4, 5, 6

d
E(k, 2m ) is the additional number of binary combinations on all possible k from 2m  bits

E(3, 8) E(4, 8) E(5, 8) E(6, 8)

1 42 105 140 105
2 72 165 200 135

3 90 195 220 140

4 96 204 224 140

5 90 195 220 140

6 72 165 200 135

7 42 105 140 105
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Fig. 1. E(3, 27) is the additional number of binary combinations for all possible k = 3 from 2m = 128 bits.
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Fig. 2. Average value of the Euclidean distance AED(CRT(k), CRT(l)) (experiment) for m = 10 and q = 5 and calculated in
accordance with Corollary 3 (formula). 
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Fig. 3. Average difference value (%) of the experimental value AED(CRT(k), CRT(l)) from the theoretical value obtained
by the formula for m = 10.

obtained for q = 2m can be used as a mean value for q < 2m and can be determined by the relation

AED(CRT(k), CRT(l)) = 
Statistical tests were conducted in order to confirm this corollary. In particular, 5000 initial controlled

random tests were generated for m = 10 and various q < 2m. Then, tests CRT(k) were constructed using all
possible values of CRT(k). Next, the experimental value of d ∈ {0, 1, …, 1023} was determined as a result

(2 ).mqd d−
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of averaging over 5000 pairs of tests CRT(k) and CRT(l) and, according to Corollary 3, by the formula

 Figure 2 shows the results for the case of the small value q = 5 when the experimental error is
maximum with respect to the analytical result.

It is obvious that, according to Corollary 3, the error between the experimental values AED(CRT(k),
CRT(l)), and theoretical values should decrease with increasing value of q. When q = 2m, experimental and
theoretical values should be equal, which is confirmed by practical results given in Fig. 3. The figure shows
averaged values of deviations of the experimental data from the theoretical results depending on q.

As can be seen from Fig. 3, even for q > 100, the experimental results hardly differ from the theoretical
values, which confirms the validity of using the results of Theorem 1 to generate controlled random tests.

6. CONCLUSIONS

The concept of multiple controlled random tests has been considered. Existing solutions have been
analyzed, and a formal method for generating multiple tests has been proposed. The efficiency of using
the Euclidean distance to construct multiple tests has been confirmed based on the experimental results
for the case of multiple tests of storage devices.
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