
Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Spatial, polarization and angular characteristics of external conical
refraction

V.V. Filippov

Belarusian State University of Informatics and Radioelectronics, P. Brovka Str. 6, 220013 Minsk, Belarus

A R T I C L E I N F O

Keywords:
Biaxial crystals
Optic axes
Conical refraction
Ray cone
Dispersion

A B S T R A C T

Appearance of two rings of external conical refraction (ECR) is investigated theoretically within the plane-wave
approximation. The hollow cone of ECR is the cone of normals inside a crystal. Due to a birefringence, two sets
of isonormal waves are related to the cone. One set forms a filament of rays directed along the biradial, and the
other set generates the hollow cone of rays. The apex angle of the cone is nearly twice as large as that of the cone
of normals and its axis is close to the direction of the biradial. After leaving the exit facet of a crystal plate, the
ray filament spreads into a cone again, and the ray cone gives rise to a second outer cone so that two
nonconcentric rings appear at a screen behind the plate. Polarization states at the neighbouring points of the
rings lying on one radius are mutually perpendicular. Numerical calculations were performed for crystals with
moderate and large optical anisotropy, namely KGd(WO4)2, ammonium oxalate, L-N-(5-Nitro-2-peridyl)
leucinol and sulfur. Dispersion of the angle of ECR, the apex angle of the cone of incident (from air) waves
and the ray cone is calculated for three tungstate crystals, KGd(WO4)2, KLu(WO4)2, and KY(WO4)2.

1. Introduction

The phenomenon of external conical refraction (ECR) was pre-
dicted simultaneously with internal conical refraction (ICR) by
Hamilton in 1832 and their existence shortly after was confirmed
experimentally by Lloyd [1]. Since then, a lot of attention has been paid
to the investigation of ICR (see, for example, [2], where the main steps
in the study of ICR are presented). The essential features of this
phenomenon can be described within a simple plane wave approxima-
tion [3–5]. Full and detailed picture of conical refraction is deduced
using different models of real beams with a finite size [6–9] (the so-
called internal “conical diffraction” [10]).

ICR attracts more and more interest during the last years. The
renewed interest to the phenomenon is mostly related to demonstra-
tion of efficient conical refraction lasers [11,12] with excellent beam
quality and its application in optical manipulators [13] and mode
convertors [14]. Interesting features were observed when a convergent
beam passed through a biaxial crystal along one of its optic axis. Being
transformed by ICR, the emerging light pattern showed a complex
evolution upon propagation and a very complicated spatial structure
[8,15,16]. A good agreement between theoretical description and
experimental observations has been demonstrated taking into account
the diffraction of electromagnetic wave propagating through a biaxial
crystal and interference of light behind the exit face of the crystal. It
should be mentioned also the theoretical description and experimental

results on ICR in chiral and nonlinear crystals (see [17–22] and
references therein).

In contrast to ICR, very few studies of ECR are known to date [23–
29]. Meanwhile a possibility to obtain high intensity densities within
the crystal due to ECR is an attractive peculiarity of the phenomenon
which especially becomes interesting for nonlinear effects like Raman
shifting or phase conjugations [27]. The polarization dependence of
ECR was demonstrated for ammonium oxalate and lithium formate
[23] and, as it was stated in [24], the polarization distribution on the
cone of ECR is the same as in the case of ICR. The measured in [24]
angle of the cone of the external conical refraction in air for KTN crystal
(3°24′) was in accordance with the calculated value (3°13′). In both
works only one bright ring related to the ECR cone was observed on a
screen behind the crystal. However, later on Mikhailichenko showed
the existence of two bright rings [25,26]. The appearance of second
ring was explained by influence of the birefringence (it was marked also
in [28]). Thus, this situation outwardly reminds finding the double
rings for ICR and the subsequent explanation of the phenomenon on
the basis of a double refraction of a bounded light beam. Nevertheless,
both effects are observed under conditions that are not identical. ICR
occurs for a single direction in a crystal (i.e., the wave optical axis) for
which the double refraction is absent. Then, when dealing with a
bounded divergent light beam, we include the effects of a double
refraction into the consideration. On the contrary, ECR phenomenon
takes place for a direction with a double refraction (namely, the
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direction of a ray optical axis). Consideration of bounded light beam
propagation in this direction does not change the situation in principle
albeit it can bring in new additional details in the phenomenon. In their
theoretical study of a bounded (Gaussian) beam propagation along the
ray optical axis, Belsky and Khapalyuk marked that, as it can be
expected, the structure of the beam after passing a crystal changes
insignificantly due to the absence of the wave surface peculiarities for
the direction of the ray optical axis [29]. The output beam exhibits
astigmatism and elliptical cross-section that is the result of the crystal
optical anisotropy. Meanwhile, in the case of ICR, the intensity profile
of the output beam in the far-field is asymptotically equal to that of the
incident beam [30].

Finally, of special interest are the recent experiments of Cattoor
[31]. He showed the possibility of having laser action using the
phenomenon of ECR. In his experiments the crystal Ho3+: KY(WO4)2
was cutted to have ECR for pump beam. This pump scheme allows the
divergence of the pump inside the crystal to be reduced. Other
peculiarities of the scheme are also noted in [31].

Lloyd in his experiments used a strongly convergent beam incident
onto an entrance crystal surface and observed the phenomenon of ECR
looking through the aperture. This aperture allowed him to select only
those rays from all rays arising in the crystal, direction propagation of
which was close to the direction of a biradial. On the other hand, in
such experimental scheme it was impossible to observe the second ring
of ECR. Quiet different scheme of observation was applied by
Mikhailichenko [25,26]. He used a hollow cone of converging waves
which was formed by a ring-shaped diaphragm. In such a case there
was no need in an exit aperture that allowed him to establish the
existence of two rings at a screen behind the crystal plate and to study
the polarization distribution along the new ring.

In the present paper, we consider ECR as a double refraction
phenomenon for the particular direction (ray optical axis) of wave
propagation in a crystal. Parameters of the two cones of ECR which
arise in this case and the distribution of the polarization on the cones
are calculated analytically and using numerical analysis for different
crystals with a moderate (monoclinic double tungstates, MDTs) and
large (organic crystals, sulfur) optical anisotropy. MDTs exhibit
pronounced nonlinear properties. In particular, they possess large
third order nonlinear optical susceptibility that opens possibilities for
developing efficient Raman lasers and give rise to other common
nonlinear phenomena including two-photon absorption, stimulated
Brillouin scattering and self-focusing [32–34]. Considering these
possible applications of the phenomenon, dispersion of ECR angles
in and out of the crystal is calculated for the three MDTs, namely
KGd(WO4)2, KLu(WO4)2, and KY(WO4)2.

2. Basic equations

Both conical refractions (internal and external) can be described
from geometrical properties of the characteristic surfaces which are
used in crystal-optics. Four conoidal cusps (diabolical points [2]) of an
index surface give the optical axes of the crystal or binormals. Internal
conical refraction happens when light upon entering a biaxial birefrin-
gent crystal along one of the binormals direction, spreads out in it into
a hollow cone of rays and exits the crystal slab in the form of a hollow
cylinder (two concentric cylinders of light under rigorous examination).

Four conoidal cusps of a wave surface correspond to two optical
axes of the second type, ray optical axes or biradials. In the case of
external conical refraction a hollow cone of light, converging towards a
point on the surface of a biaxial crystal slab, will become (under some
conditions) collimated along the optic ray axis of the crystal (if
birefringence is not taking into account). When this bundle of rays
reaches the opposite facet of the slab, it emerges as an expanding cone
of light.

In the wave theory, it is more convenient to relate these phenomena
to the properties of a dielectric tensor of the crystal ε which fully

describes its wave properties. The tensor has a diagonal form in the
right-hand system of the principal axes with the unit vectors up, um,
and ug and for biaxial crystals it has three different principal
eigenvalues εi=ni

2, where nj (j=p, m, g) are the principal refractive
indices of the crystal. Unit vectors (otrs) up, um, and ug coincide with
the optical indicatrix axes Np, Nm, and Ng, respectively. Let us use a
dyadic form for the representation of ε. The tensor ε may be written in
Fedorov axial dyadic representation [35]:

u u u u u u c c c cε ε ε ε ε
ε ε

= ⋅ + ⋅ + ⋅ = +
−
2

( ⋅ + ⋅ ).p p p m m m g g g m
g p

1 2 1 2 (1)

Here, the dot indicates a direct product of vectors (diad); in the
coordinate representation, (a c)ik=aick. The convolution of a diad with
a vector is a vector and it reduces to a scalar multiplication of two
adjacent vectors, for example, (a c)u=cu a. The unit vectors c1 and c2
give directions of the two ray optical axes or biradials:
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The axial representation of the inverse tensor ε-1=(1/εp)up·up+(1/
εm) um·um+(1/εg)ug·ug determines the optical axes (binormals) of a
biaxial crystal:
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Note that for convenience we marked here the vectors of binormals
by prime in contrast to [35,36] where the prime was used for the
biradials.

An equation for the cone of ECR follows from the Maxwell's
equations and it can be written in the form [36]:

r r rc r cε ε r ε r r c r ε c– · = – · = 0,1 1 i ik k n n l lm m1 1 (6)

where radius-vector r||n, n is a wave normal (n2=1). From this
equation it follows that c1 and a vector gN:

g ε
ε

k
ε

k= с = 1 u + 1 uN
p

p p
g

g g
−1

1
(7)

are two the cone generators. To find the cross-section of the cone by a
plane located at a distance l from its vertex and perpendicular to the
biradial c1 (r= lc1+r′, where r′⊥c1), we introduce a unit vector
dmutually orthogonal to the vectors um and c1, so:

d u uk k= – ,g p p g (8)

and we decompose the plane radius-vector r′onto two compo-
nents:r′=r′d·d+r′um·um. Taking into account that r′c1=0 and ac-
cording to Eqs. (1) and (8), r′εr′=εmr′2 and r′εc1 =(1/2)(εg –εm)dc2,
where dc2=– 2kpkg, finally we find:
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This is an equation of a circle of radius R=(1/2)(εg –εm)lkpkg with
a center at (1/2)(εg –εm)lkpkgd, and so the apex angle of the cone of
normals of ECR χN is equal to arctan (2R/l) or

χ arc
ε ε ε ε

ε
= tan

( − )( − )
,N

g m m p

m (10)
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that coincides with the well-known expression [28]. The cone of ECR
arising due to the refraction of a hollow cone of incident waves
schematically is shown in Fig. 1(a).

For all wave normals belonging to the cone expressed by Eq. (6), the
birefringence should occur. This means that two waves can propagate
along any cone generator. Their polarizations are mutually orthogonal,
and the refractive indices and the directions of the energy flux (rays)
are different. For one of the two waves, the ray is always parallel to the
biradial c1 (the phenomenon of ECR), while for the second one, this is
not the case. Thus, we should find the cone of rays caused by double
refraction of waves with normals located at the cone of external conical
refraction, see Eq. (6). It is worth, however, to start with a special case
of the principal plane of the optical indicatrix orthogonal to the Nm

principal axis (or to the ort um). This plane contains all optical axes of
a crystal and the cone generators gN and c1. One of the isonormal
waves with a vector E (and an electrical induction D) polarized
perpendicular to the plane propagates in this plane as an ordinary
(o) wave in the uniaxial crystals, i.e., its refractive index (no=εm

1/2)
does not depend on the propagation direction and its ray vector po is
parallel to n. The behavior of the second wave with a vector D located
in the plane is similar to the behavior of an extraordinary (e) wave in
uniaxial crystals. So, we have [35,36]:

p n p n
n nε

n ε
ε ε

n
ε ε

ε
= , = , = .o

m
e e

p g
e

p g2

(11)

Here, po and pe are vectors of ray refraction [35]. If multiplied by c
(light velocity in vacuum), they equal in magnitude to a ray velocity
directed along the wave energy propagation. Note, that
nonpo=nenpe=1, which means synchronism of a phase and energy
propagation.

Substituting the direction c1 of the cone (Eq. (6)) generator into Eq.
(11), we find that the ordinary ray is directed along the biradial. The
extraordinary ray is directed along the vector

g c u uε εk εk= = + .R p p g g1 (12)

For the second cone generator gN, on the contrary, the ordinary ray
being parallel to gN, does not coincide with the direction of the biradial
c1, but the extraordinary ray is directed along it. Three vectors c1, gN
and gR, in essence, define the cross-sections of the ray cone and the
cone of external conical refraction (the cone of wave normals) by the
principal optical indicatrix plane Np-Ng. The directions of these
vectors can be properly specified in this plane by corresponding angles.
To define these angles with respect to the Np axis of the optical
indicatrix, see Fig. 1(b), is convenient because in many crystals this axis
coincides with the crystallographic axis b:
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As εp < εg by definition, so βR > βbir > βN. If knowing these angles,
we can always find the apex angle of the cone of normal, χN=βbri– βN,
and the apex angle of the ray cone, χRβR– βbir, in the Np-Ng plane
(perpendicular to the ort um).

In general, two isonormal waves propagating in any direction of the
phase normal n have refractive indices depending of its orientation
relatively the binormals c′1 and c′2 [35]:
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Here, the square brackets mean the vector product of the two vectors;
the scalar product of two vectors [nc′1] and [nc′2] and their squares
can be written in the form:

nc nc c c nc nc[ ′][ ′] = ′ ′–( ′)( ′),1 2 1 2 1 2 (15a)
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2

1,2
2 (15b)

The corresponding vectors of the ray refraction are given by [35]
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Here, ε means a tensor mutual with ε, εt is its trace:ε=εε-1,
εt =εmεg+εpεg+εpεm, det (ε)=εpεmεg. In Eq. (16), the scalar denomi-
nator may be omitted, because it does affect the determination of the
directions of p ± , except of its sign which is negative in some cases. One
of the waves with the subscript “–” for all directions of the cone of
normals, Eq. (6), hasthe ray refraction vector directed along c1. The ray
refraction vectors of the second wave with the subscript “+” form a
cone of rays. In order to find this cone, it is necessary to determine the
wave normals which define the ray refraction vectors, Eq. (16), and
satisfy Eqs. (6) and (7). Forthis, we introduce an angle α in the plane of
cross-section defined by Eq. (9), as shown in Fig. 1(b). Then the radius-
vector r′ of the circle can be written as r′=2Rcos2α d+Rsin(2α) um so
for every cone generator lc1+r′, the corresponding wave normal after
normalization can be written as:

n
c d uπ cos α sin α χ

χ α
=

+ (2 + 2 )tan( /2)

1 + (tan cos )
.m N

N

1
2

2 (17)

Due to the symmetry reasons, the angle α can be restricted to the
region 0≤α≤π/2. Eqs. (14), (16) and (17) are rather complex, so it is
difficult to deduce from them the ray cone equation in an analytical
form. Thus, mostly a numerical analysis will be used hereinafter. Four
biaxial crystals of different anisotropy were chosen for calculations,
potassium gadolinium tungstate (KGW), (NH4)2C2O4 H2O (ammonium
oxalate), and L-N-(5-Nitro-2-peridyl)leucinol (NPLO). The first one
when doped with trivalent rare-earth ions is a well-known laser crystal,
while the next two are organic crystals having large (particularly NPLO)
optical anisotropy.

The experiments in [25,26] were carried out with ortorhombic
sulfur crystals, therefore it was included into our consideration too.
Sulfur posses a large birefringence but poor heat conductivity which
makes it brittle and unsuitable for practical applications. The principal
refractive indices of these crystals are listed in Table 1.

3. Discussion

Let us find the curve in the cross-section of the ray cone by the same
plane as in the case of the cone of normals. To do this, we determine
three projections of p+(we remind here that p– ׀׀ c1) on c1, um and d

Fig. 1. (a) The cone of ECR inside a crystal as a result of refraction of a hollow cone of
incident waves; all rays coincide with c1 (direction of the biradial). (b) Cross-section of
the cone of ECR (cone of normals) defined by vectors gN, and c1 and the ray cone
defined by vectors gN and gR.
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orts and normalize them so that the condition p+c1=1 is fulfilled.
When α takes all values in the interval [0, π/2], the generator of the
cone of normals circumscribes a semicircle in the cross section plane
while the generator of the ray cone circumscribes a curve close to a
semicircle, see Fig. 2. The ratio of the curve diameters in d and um
directions is close to unity (0.9996, 0.9956 and 0.9654 for KGW,
ammonium oxalate and NPLO, respectively). A large difference in the
diameters of the cross-sections of the ray cone and the cone of normals
is clearly seen from Fig. 1 and Fig. 2; their ratio is close to 2 (1.9918,
2.0774 and 1.83 for KGW, ammonium oxalate and NPLO, respec-
tively). This is true for all biaxial crystals. Indeed, as it follows from Eq.
(13), the ratio of tan(βR– βbir) to tan(χN) ranges between εp/εg and
εg/εp (that is near 1). This means that the apex angle of the ray cone is
nearly twice as large as that of the cone of normals and the biradial c1
is close to the position of a bisector of the ray cone apex angle.

Calculations presented in Table 2 prove these conclusions. At α=π/
4, the radius-vector r′of the circle cross section of the cone of normals
is parallel to um. Simultaneously, the corresponding radius-vector of
the cross section curve of the ray cone reaches the same direction that
is a result of its angular speed which is on average twice as large as that
for radius-vector r′. The size (diameter) of the ray cone cross-section in
this direction (transversal diameter) is slightly larger than that in the

cross section by the Np-Ng principal plane. Thus, the apex angle in this
cross section passing through the vertex of the cone and this transver-
sal diameter, which we denote in Table 2 as χS, is slightly differ from
χR. For NPLO with its huge optical anisotropy, the largest value of the
transversal diameter deviates from the direction of um and is observed
at α=44° (136° if we include into the consideration of α a wider angular
interval; the angle χS in Table 2 is given for this diameter). This means
that only the inverse center exists as a symmetry element of the ray
cross section curve but it is noticeable only in crystals with exclusive
optical anisotropy. Mirror symmetry of the ray cross section curve
relatively to the Np-Ng principal plane can be regarded, strictly
speaking, only approximately. Nevertheless, even for such a strongly
birefringent crystal as ammonium oxalate, the deviation from the
mirror symmetry is negligibly small. The ratio of the tangent of the
apex angle of the ECR cone χN to that of ICR cone is equal to npng/
nm

2. Because this ratio is close to unity, the apex angles of both cones
are close to each other. In KGW, for example, these angles are 2°13′
and 2°08′ for ECR and ICR cones respectively.

The polarization distribution of the vector of electrical induction D
within the cross section curves is illustrated in Fig. 2 by two-sided
arrows. For any point A of the circle cross section of the wave normal
cone specified by an angle α, the vector D– located in the plane
containing a wave normal n and the ray refraction vector p– ׀׀ c1 is
parallel to the line OA (D–║[np–]). In the Np-Ng principal plane at
α=0 and α=π/2, it is the polarization of the extraordinary or ordinary
waves, respectively. For the second wave with the vector D+ being
orthogonal to D–, the corresponding point A′ is determined approxi-
mately by the angle 2α (the angular speed of movement along the circle
for any point A on the average is half of that for the corresponding
point A′ of the cross section of the cone of rays).

The cone of ECR is caused by the cone of waves incident on a crystal
from an external medium. This cone is easily found using the Snell's
law; it splits into two cones due to the two isonomal waves in a crystal:

χ n sin n c= arc( ( , )),± ± 1
∧

(18)

where air is supposed to be an ambient medium. In Eq. (18), n belongs
to the cone of wave nomals, Eq. (6), and depends on the angle α which
defines the position of the plane of incidence relatively to the Np-Ng

principal plane of the optical indicatrix (hereafter, the principal plane
of incidence). As is clear from the calculations carried out for the
crystal cut orthogonal to the biradial, the cross-section curves of
incident wave cones in the plane parallel to the crystal facet are close
to circles (even for ammonium oxalate, the ratio of mutually orthogonal
diameters is 0.998). For the direction of an incident wave parallel to the
biradial, the cones, Eq. (18), are in contact and χ+– χ–=0. The
maximum difference between χ+ and χ– is observed in the principal
plane of incidence when the refracted waves propagate along gN. In
this case, the difference reaches 2′ for ammonium oxalate and only 0.3′
for KGW and thus can be neglected for these and practically for all
other crystals (but for NPLO it has a noticeable value equal to 1°09′).
Such a small difference is stipulated by the proximity of gN to the
direction of the crystal binormal c′1 when n+ and n– are equal (for
example, in KGW the angle between gN and c′1 is ~4°). Calculated
values of the apex angles for cones, Eq. (18), are presented in Table 3.

Table 1
Principal refractive indices of the crystals used in calculations.

Crystal λ, nm Principal refractive indices Point group Ref.

np nm ng

KGW 632.8 2.01348 2.04580 2.08608 C2/c [37]
AOa 667.8 1.4362 1.5426 1.5892 222b [38]
NPLO 632.8 1.4570 1.6310 1.9330 222 [38]
Sulfur 508.0 1.9876 2.0938 2.3380 2/m2/m2/mc [39]

a Ammonium oxalate (AO).
b Orthorhombic α-modification.
c Optically positive crystal (all others are negative).

-0.08 -0.04 0 0.04 0.08

l/x

0.08

l/y

Η Η

2Η A

AΗ

O

Fig. 2. Cross-section by plane orthogonal to the biradial c1 of the cone of normals (small
semicircle) and the cone of rays (large semicircle) for ammonium oxalate. O is the
location of the biradial, the two-sided arrows show the polarization of the vector D (see
the text for the details).

Table 2
Angles between up (the direction of the Np axis of the optical indicatrix) and the biradial
(βbir), up and the ray cone generators (βR, βN), apex angles of the cone of wave normals
(χN), the ray cone in the principal Np-Ng plane of the optical indicatrix (χR) and in the
plane orthogonal to it (χS).

Crystal βbir βR βN χN χR χS

KGW 48°24' 50°24′ 46°23′ 2°13′ 4°02′ 4°02′
AO 34°10′ 39°43′ 28°60′ 5°98′ 10°47′ 10°47′
NPLO 54°45′ 68°77′ 38°48′ 15°57′ 29°20′ 30°20′
Sulfur 57°40′ 65°25′ 48°44′ 8°53′ 16°38′ 16°37′

Table 3
The apex angles for the cones of incident waves for the considered crystals.

Crystal Apex angle

χ+ χ–

KGW 4°08′ 4°09′
Ammonium Oxalate 7°59′ 8°01′
NPLO 26°38′ 27°47′
Sulfur 18°51′ 19°06′
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The cone of incident waves χ+ is related to the ray cone inside a
crystal. It should be noted that the ray cone being a result of
birefringence always arises inside the crystal even if the incident
convergent beam does not contain waves making the cone χ+. The
second cone of the incident waves χ– produces inside the crystal
refracted waves for which the rays are parallel to c1. In the principal
plane of incidence, the wave normal of one of these refracted waves is
directed along c1 (zero angle of refraction). The second wave is an
ordinary wave; for this wave the angle of refraction is equal to the apex
angle of the cone of normals χN and the refractive index n–=nm.
Hence, neglecting the difference between χ– and χ+ and taking into
account Eq. (18), we find the apex angle of the cone of incident waves
χinc=χ– as:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟χ n χ n

ε ε ε ε
ε ε ε ε ε

= arc( (sin )) = arcsin
( − ) ( − )

+ ( − )
.inc m N m

m p g m

p m g m p (19)

A hollow cone of incident convergent beam is rearranged within the
crystal into a single ray of light propagating along the biradial and into
a cone of rays with its axis close to the direction of the biradial. The
refraction at the exit facet of a plane-parallel crystal plate leads to the
appearance of two cones and two light rings at a screen behind the
plate. Axes of the cones are not parallel but their directions differ
slightly and therefore the cones and the rings for crystals with a small
and moderate optical anisotropy are practically coaxial. A special
polarization distribution takes place for each of the cones. In
Fig. 3(a), the orientation of the electric vector E of the wave field is
shown by two-sided arrows (located in the plane of incidence) or by dot
(if E is perpendicular to the plane). A full picture of the polarization
distribution for both light rings at the screen is presented in Fig. 3(b).
For the two light rings, the polarization planes are mutually perpendi-
cular at the points lying on one radius. It is provided by double angular
speed of movement with the change of α angle for points at the ray cone
inside the crystal, as mentioned above. For the inner circle, as shown in
Fig. 2 and Fig. 3(b), the orientation of an electric vector E (D within a
crystal) is in line with that in the case of ICR.

According to Fig. 2 and Fig. 3, over the circumference of the outer
(ray) ring, the vector E changes from the direction in plane for the left
ray in the principal plane of incidence to the direction perpendicular to

this plane for the right ray and vice versa for the inner cone. These
peculiarities of the polarization distribution over the rings were noted
by Mikhailychenko in his observations of ECR in the sulfur crystal plate
[25,26]. He has also found that the angle of ECR for sulfur is ~7° [25]
and it is almost 2-times increased after crossing the crystal-air surface.
As it follows from our calculations, the angle of ECR is about 9° for this
situation (see χN in Table 2). After leaving the exit face, light spreads
into a cone with more than doubled apex angle (the angle χ– in
Table 3). Such a difference seems to be related to the accuracy of
measured refractive indices (for a more detailed discussion, see the
next section). As noted in [25], the spacing between the rings of ECR is
determined by the crystal thickness h. In experiments with sulfur [25],
the crystal thickness was 12 mm and the measured spacing x was
2 mm. From Fig. 3, it is easy to deduce that the spacing is not a
constant and changes between x1=h tan(χN) and x2=h tan(χR–χN) or
1.6 and 1.9 mm (while for χN~7° [25] the spacing is less than 1.5 mm).
It should be emphasized that the spacing is also strongly dependent on
the crystal anisotropy and, for instance, for KGW of the same thickness
it equals to only 0.5 mm.

4. Dispersion of the ECR characteristic angles

High light intensity within the crystal in the direction of its biradials
owing to the beam filamentation can be achieved easily in the case of
ECR that is interesting for nonlinear applications of the phenomenon.
A promising crystal family for nonlinear and laser applications is
MDTs. MDTs possess relatively high optical anisotropy and they can be
grown of large sizes, high quality and homogeneity. Three crystals of
the family, namely KGd(WO4)2 (KGW), KLu(WO4)2 (KLuW) and
KY(WO4)2 (KYW) were chosen for calculations. Dispersion of their
principal refractive indices can be found in the literature [37,40–43].
The Sellmeier equation was used by different authors to model the
dispersion of the principal refractive indices nj or the principal
dielectric impermeabilities εi=ni

2, (j= p, m, g), the last is more
physically justified.

It should be pointed out that, as is seen from Eqs. (3) and (13), the
directions of the optical axes (binomals and biradials) and also the
vectors gN, gR depend on differences of the principal dielectric
impermeabilities which are proportional to the principal refractive
indices. Hence it follows that even a slight change of one of the three
principal refractive indices makes a marked deference in the orienta-
tions of these directions. Such an extreme sensitivity on the refractive
index differences was noted in [44] for the angle of the cone of ICR and
in [45] for the binormal orientation. In the latter paper, the authors
have found parameters of the three-term Sellmeier dispersion formula
for Ho3+:KYW [46] and they corrected the fitting parameters for the
refractive index ng of KGW [40] (pure and doped with Nd3+ ions) using
an original approach for the determination of the optical axis disper-
sion based on ICR. These parameters give very precisely the shape of
the dispersion curves for specific directions in the crystal (in our case,
the angles βbir, βR and βN), although their absolute values may differ
remarkably ( ± 1° for the directions of binormals [45,46]). In mono-
clinic crystals, only one of the axes of the orthonormal dielectric frame
{Np, Nm, Ng}, namely the Np axis, coincides with the crystallographic
axis (b-axis). Other two axes Nm, Ng (and two crystallographic axes
aand c) are located in the plane perpendicular to the b-axis and their
position is wavelength-dependent [47]. Only taking into account this
peculiarity of the monoclinic crystals, the dispersion of their principal
refractive indices can be determined correctly. This was done in [48]
where the behavior of the dielectric frame as a function of wavelength
was measured for the first time for three MDTs KGW, KYW and the
Sellmeier equations of the principal refractive indices were refined in
the spectral range of 0.4–1.6 µm. These data were used in our
calculations.

Fig. 4 illustrates the dispersion of the biradial orientation in the
three MDTs. For comparison, the dispersion curves for the binormal

Fig. 3. External conical refraction. (a) Cones of incident waves giving rise to the ray
filament and the cone of rays inside a crystal and two light cones behind the crystal plate;
x1 and x2 are the spacings between the light rings. (b) Two light rings at a screen behind
the crystal plate. Polarization of the electric vector E is shown by two-sided arrows. For
inner (E–) and outer (E+) rings, they are mutually perpendicular at points lying on one
radius.
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orientation defined by the angle βbin, where

tgβ
n
n

tgβ= ,bin
p

g
bir

(20)

are shown in too. From Eq. (20), it is obvious that in all crystals βbin
< βbir. Notice that our crystals the dispersion behavior of both angles
βbin and βbir is almost identical.

The dispersion of the apex angles of ECR χN and the ray cone χR is
presented in Fig. 5. It is evident from this figure that the shapes of the
dispersion curves for χN and χR are fully identical and differ only by a
slightly more strong dependence χR on the wavelength. If comparing
the dispersion curve for the cone of incident waves (Fig. 6) with that of
the rays inside the crystal χR, one can see that they match almost
exactly. In fact, as it was shown above, the apex angle χR is equal
roughly to 2χN. It also follows from Eq. (19) that at small χN, we can
approximate χinc≈nmχN. For MDTs, nm~2 so that χR≈χinc. As it is
clear from Tables 2, 3, for KGW at the wavelength of 632.8 nm
χR=4°02′ while χinc=χ–=4°09′ so the difference between them is only
7′. In KGW, KYW and KLuW, the difference χinc–χR is less than 20′,

22′ and 31′, respectively (maximum values observed at 400 nm) for the
whole studied spectral range. Thus, the ray cone in the MDT crystals
approximately coincides with the cone of incident waves. Hence it
follows that the cone of refracted waves at the crystal plate exit face
nearly is a continuation of the ray cone inside the crystal.

5. Conclusions

The hollow cone of ECR is a cone of wave normals inside a crystal.
This cone is related to two sets of rays owing to the birefringence. One
set contains the rays propagating along the crystal biradial, and the
second one forms a cone of rays. Its cross section by a plane orthogonal
to the biradial is close to a circle. This is also true for the hollow cone of
the waves incident on the crystal which give rise to the cone of ECR.
The apex angle of the ray cone is nearly twice as large as that of the
cone of normals so that its axis is close to the direction of the biradial.
Two sets of rays belong to two sets of isonomal waves in a crystal. Every
pair of isonomal waves have different refractive indices and so through
the Snell's law should be related with two different cones of incident
waves. Because directions of the biradial and binormal (usually
referred as an optical axes for direction of which the refractive indices
of both waves in the crystals are equal) are close, the difference in the
value of these refractive indices is small therefore the difference for the
cones of incident waves is insignificant and practically in all cases can
be ignored. After leaving the exit face of a plane-parallel crystal plate,
the light rays that propagate along the biradial spread into a cone again
(the first cone). The cone of rays within the plate after refracting at its
exit face transforms into the second cone. Thus, two light rings are
observed at a screen after the crystal plate, in accordance with [25,26].
Polarization planes for the two rings of ECR are mutually perpendi-
cular at the points lying on the same radius. For the inner ring, the
polarization distribution is the same as in the case of ICR [24]. Keeping
in mind the possibility of energy concentration along the biradial, we
should form the corresponding polarization distribution in the hollow
cone of the incident waves to circumvent an appearance of the ray cone
inside and the second cone behind the crystal. This can be achieved
using ICR to form a hollow cone of rays with the needed polarization
distribution in air and then focusing it on a surface of another crystal
surface. It was just this scheme which was recently realized in [31].
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Fig. 4. Dispersion curves of the angle between the biradial (solid lines), binormal
(dashed lines) and the Np axis for MDTs.
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