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The Painlevé test for nonlinear system

of differential equations

with complex chaotic behavior
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220013, Belarus

E-mail: tsegvv@bsuir.by

Abstract. The Painlevé-analysis was performed for solutions of nonlinear third-order
autonomous system of differential equations with quadratic nonlinearities on their right-hand
sides. At certain values of two constant parameters incorporated into the system, the latter
exhibits complex chaotic behavior. When the parameters attain the values corresponding to
complex chaotic behavior, the system was found not to possess the Painlevé property.

The system of differential equations

ẋ = z, ẏ = −ay − xz, ż = z − bz2 + xy (1)

with unknown functions x, y, z of the independent variable t and constant parameters a, b

belongs [1, 2] to the class of chaotic systems

ẋ = y, ẏ = −x+ yz, ż = −x− axy − bxz, (LE1)

ẋ = y, ẏ = −x+ yz, ż = −y − axy − bxz, (LE2)

ẋ = y, ẏ = −x+ yz, ż = x2 − axy − bxz, (LE3)

ẋ = y, ẏ = −x+ yz, ż = −axy − bxz − yz, (LE4)

ẋ = y, ẏ = −ax+ yz, ż = −x2 + y2 − bxy, (LE5)

ẋ = y, ẏ = −x+ yz, ż = ay2 − xy − bxz, (LE6)

ẋ = z, ẏ = x+ yz, ż = ax2 − xy − byz, (LE7)

ẋ = z, ẏ = x− yz, ż = −ax2 + xy + bxz, (LE8)

with hidden attractors and line equilibrium. Such systems are important and potentially
problematic in engineering applications, because they allow unexpected and potentially
disastrous responses to perturbations in a structure like a bridge or an airplane wing. In case
a = 1.62, b = 0.2 the system (1) possesses a hidden attractor. Considering, that t is a complex
variable, find out, at what values a, b the general solution of the system (1) has no movable
critical singular points, i.e., whether for (1) the so-called Painlevé property is carried out.
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To solve this problem let us apply to the system (1) formal Painlevé test [3].
The following statements are true
Theorem 1 The system (1) passes the Painlevé test under parameters values a = −1, b = 0.
Theorem 2 The system (1) when a = −1, b = 0 is a system of Painlevé-type and does not

possess chaotic behavior.
The validity of Theorem 2 follows from the facts, that
1. The system (1) is equivalent to the equation

x
...
x + (a− 1)xẍ+ 2bxẋẍ− ẋẍ− bẋ3 + abxẋ2 + ẋ2 + x3ẋ− axẋ = 0 (2)

2. The equation (2) when a = −1, b = 0 has the first integral

(ẍ− ẋ)2 = C2x2e2t − x2ẋ2, (3)

where C is the arbitrary constant. The equation (3) possesses the Painlevé property, since its
solutions are expressed through solutions of the third Painlevé equation under the private values
of the parameters.

3. The unknown functions y, z, incorporated into the system (1), in a rational way are
expressed through x, ẋ.

The statement of Theorem 2 is consistent with the well-known hypothesis [4], according
to which the execution for the system Painlevé property with a high degree of confidence is
considered to be incompatible with the randomness of its behavior.

Theorem 3 The equation (2) under parameters values a = 1.62, b = 0.2 possesses chaotic
behavior and does not pass the Painlevé test.

Theorem 4 The system (1) in case a = 0 does not possess chaotic behavior.

Indeed, when a = 0 the system (1) has autonomous first integral x
2

2
+ y = C, where C is the

constant of integration. The presence of this integral allows us to reduce (1) to two-dimensional
autonomous system. According to [5] solutions of two-dimensional autonomous systems cannot
be chaotic.

Theorem 5 The equation

x
...
x − 2xẍ−Ax3ẋ−Bxẋ+H(ẋẍ− ẋ2) = 0 (4)

under parameters values
a) either H = 0;
b) or H = −1, A = B = −1

is the equation of Painlevé-type.
Indeed, when H = 0 the equation (4) has first integral

ẍ = Ax3 +Kx2 −Bx, (5)

where K is the constant of integration. Integration of the equation (5) is carried out in elliptic
functions.

In case b) the equation (4) coincides with (2) when a = −1, b = 0.
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