ПОСТРОЕНИЕ УПРАВЛЯЮЩИХ ФУНКЦИЙ ДЛЯ РЕАЛИЗАЦИИ ПРОГРАММИРУЕМЫХ ДВИЖЕНИЙ

И. В. Дайняк, С. Е. Карпович Кафедра высшей математики,

Белорусский государственный университет информатики и радиоэлектроники Минск, Республика Беларусь

E-mail: dainiak@bsuir.by, mmts@bsuir.by

Рассматриваются вопросы аналитического формирования программируемых движений для систем перемещений. Описан подход к построению систем дифференциальных уравнений, описывающих движение по кривым, целиком лежащим на некоторой поверхности. Приведен метод нахождения управляющих функций для движений, описываемых системой дифференциальных уравнений с кососимметрической матрицей функциональных коэффициентов.

Для построения программируемого (управляемого) движения точки по кривой l, заключающегося в воспроизведении этой кривой с помощью некоторого устройства, управляющее воздействие которого в каждый момент времени tзаключается в изменении скорости точки вдоль каждой координаты, причем это изменение - линейная функция текущих фазовых координат точки в зависимости от времени t с некоторыми коэффициентами. Эти коэффициенты и есть предмет управления. Кроме того, заданы ограничения, которым должен удовлетворять максимально возможный модуль v скорости движения точки по этой кривой. Обычно, эти ограничения заданы в виде закона v = v(t) зависимости модуля максимальной скорости от времени и определяются типом управляющего устройства.

Таким образом можно сформулировать следующую задачу: нужно так выбрать управление – коэффициенты $u_{ij}(t), i, j=1,2,3,$ в линейной дифференциальной системе 3-го порядка

$$\begin{cases}
\dot{x} = u_{11}(t)x + u_{12}(t)y + u_{13}(t)z; \\
\dot{y} = u_{21}(t)x + u_{22}(t)y + u_{23}(t)z; \\
\dot{z} = u_{31}(t)x + u_{32}(t)y + u_{33}(t)z,
\end{cases} (1)$$

чтобы фазовая кривая этой системы за некоторый промежуток времени описала кривую l и только ее, причем чтобы в каждый момент времени t движения модуль скорости исполнительного элемента объекта управления, воспроизводящего кривую l, не превосходил v(t).

После перепараметризации зададим кривую l в виде равенств

$$X = x(t), \quad Y = y(t), \quad Z = z(t),$$
 (2)

которые задают закон движения точки по кривой l в зависимости от времени t (при заданном модуле скорости v=v(t) движения точки).

Для построения программируемых движений по кривым, целиком лежащим на некоторой поверхности F(x,y,z)=0, с использованием системы (1) требуется решать громоздкую систему

линейных уравнений в общем виде, что в большинстве случаев затруднительно, а также требует больших вычислительных ресурсов от контроллера системы управления.

Может быть предложена другая модификация этого метода, которая помогает избавиться от этого неудобства и позволяет исследовать разнообразные структуры управляющих устройств в общем виде. Положим:

$$\begin{cases}
\frac{dx}{d\varphi} = \lambda_1 \psi_1 + \lambda_2 \psi_2; \\
\frac{dy}{d\varphi} = \lambda_1 \psi_3 + \lambda_2 \psi_4; \\
\frac{dz}{d\varphi} = \lambda_1 \psi_5 + \lambda_2 \psi_6,
\end{cases}$$
(3)

где λ_1, λ_2 – неопределенные коэффициенты; φ – параметр траектории; ψ_k – произвольные функции, $k = 1, 2, \ldots, 6$.

Находя с помощью полной производной по параметру φ коэффициенты λ_1 и λ_2 , из системы (3) получим

$$\begin{cases} \frac{dx}{d\varphi} = u_1 \frac{dF}{dy} - u_2 \frac{dF}{dz}; \\ \frac{dy}{d\varphi} = -u_1 \frac{dF}{dx} + u_3 \frac{dF}{dz}; \\ \frac{dz}{d\varphi} = u_2 \frac{dF}{dx} - u_3 \frac{dF}{dy}, \end{cases}$$
(4)

гле

$$u_1 = \psi_2 \psi_3 - \psi_1 \psi_4;$$

$$u_2 = \psi_1 \psi_6 - \psi_2 \psi_5;$$

$$u_3 = \psi_4 \psi_6 - \psi_3 \psi_6.$$

По уравнениям (4) может непосредственно составляться схема управляющего устройства, воспроизводящего кривые на любой поверхности F(x,y,z)=0, причем задание u_1,u_2,u_3 определяет ту или иную траекторию на ней. Вследствие произвольности u_1,u_2,u_3 управляющее устройство, структура которого описывается уравнениями (4), позволяет воспроизводить любую траекторию на этой поверхности.

Рассмотрим задачу нахождения структуры управляющего устройства для воспроизведения

траектории на сфере. Для этого рассмотрим систему (1) с кососимметрической матрицей коэффициентов

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} 0 & a(t) & b(t) \\ -a(t) & 0 & c(t) \\ -b(t) & -c(t) & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$
 (5)

Так как $x^2+y^2+z^2=const$ – ее первый стационарный интеграл, то любое ненулевое решение этой системы лежит на некоторой (своей для каждого решения) сфере. Пусть l – какая-либо кривая, целиком лежащая на некоторой сфере. Для этого необходимо и достаточно, чтобы при всех t выполнялось равенство

$$x(t)\dot{x}(t) + y(t)\dot{y}(t) + z(t)\dot{z}(t) = 0$$

для параметрического представления (2) этой кривой l через временной параметр t. Получим формулы (точнее, алгоритм) для определения непрерывных коэффициентов a(t), b(t), c(t).

Разобьем отрезок $[0;t_1]$ изменения параметра t на некоторое число k подотрезков $[0;\tau_1],[\tau_1;\tau_2],\ldots,[\tau_{k-1};\tau_k],\tau_k=t_1$, таких, чтобы на каждом из них хотя бы одна из функций (своя для каждого отрезка) x(t),y(t) или z(t) была отлична от нуля. Пусть, например, для определенности, $x(t)\neq 0$ при $t\in [0;\tau_1]$, а $y(t)\neq 0$ при $t\in [\tau_1;\tau_2]$, и т.д., для каждого отрезка — своя функция.

Определим коэффициенты a(t), b(t), c(t). Для их нахождения имеем линейную алгебраическую систему

$$\begin{cases} a(t)y(t) + b(t)z(t) &= \dot{x}(t); \\ a(t)(-x(t)) + c(t)z(t) &= \dot{y}(t); \\ b(t)(-x(t)) + c(t)(-y(t)) &= \dot{z}(t). \end{cases}$$
(6)

Ее определитель

$$\begin{vmatrix} y(t) & z(t) & 0 \\ -x(t) & 0 & z(t) \\ 0 & -x(t) & -y(t) \end{vmatrix} = 0, \quad \forall t,$$

а уравнения системы (6) линейно зависимы: умножив первое из них на x(t), второе – на y(t), а третье – на z(t) и сложив, получим тождество. Значит, для определения коэффициентов a(t), b(t), c(t) из системы (6) достаточно двух ее уравнений.

Определим коэффициенты a(t), b(t), c(t) на подотрезке $[0; \tau_1]$. Так как, по предположению, $x(t) \neq 0$ при всех $t \in [0; \tau_1]$, то из системы (6) находим:

$$a(t) = rac{\dot{y}(t) - c(t)z(t)}{-x(t)};$$
 $b(t) = rac{\dot{z}(t) + c(t)y(t)}{-x(t)};$ $c(t)$ – любая. (7)

Перейдем к подотрезку $[\tau_1, \tau_2]$. Так как, по предположению, $y(t) \neq 0$ при всех $t \in [\tau_1, \tau_2]$, то из системы (6) аналогично находим:

$$a(t) = \frac{\dot{x}(t) - b(t)z(t)}{y(t)};$$
 $b(t) - \text{любая};$
 $c(t) = \frac{\dot{z}(t) + b(t)x(t)}{-y(t)}.$
(8)

И так далее – для остальных подотрезков.

Покажем, как выбрать c(t) на $[0; \tau_1]$ и b(t) на $[\tau_1, \tau_2]$ (пока они — произвольные непрерывные функции на этих отрезках), чтобы коэффициенты a(t), b(t), c(t) были непрерывны на отрезке $[0; \tau_2]$ (аналогичная процедура последовательно проводится и для остальных подотрезков).

Зафиксируем какую-либо непрерывную функцию c(t) на подотрезке $[0;\tau_1]$, например, $c(t)\equiv 0$ при $t\in [0;\tau_1]$. Тогда коэффициенты a(t) и b(t) при $t\in [0;\tau_1]$ определятся соотношениями (7), где c(t) – зафиксированная функция. Определим коэффициенты a(t),b(t),c(t) на следующем подотрезке $[\tau_1,\tau_2]$ так, чтобы они удовлетворяли на этом подотрезке соотношениям (8) и были непрерывны на всем отрезке $[0;\tau_2]$. Нами установлено, что для этого в качестве функции b(t) на подотрезке $[\tau_1,\tau_2]$ можно взять любую непрерывную функцию, лишь бы для нее в точке $t=\tau_1$ выполнялось равенство

$$b(\tau_1) = \frac{\dot{z}(\tau_1) + c(\tau_1)y(\tau_1)}{-x(\tau_1)}.$$

Таким образом, процедура построения непрерывных коэффициентов a(t), b(t), c(t) системы (5) состоит в следующем: на отрезке $[0; \tau_1]$ задаем коэффициенты формулами (7), если $x(t) \neq 0$ при $t \in [0; \tau_1]$, или аналогичными формулами, в зависимости от того, какая из функций x(t), y(t) или z(t) отлична от нуля на этом отрезке, в которых c(t) – какая-либо непрерывная функция, например, $c(t) \equiv 0$ при $t \in [0; \tau_1]$. Далее по индукции: при переходе от подотрезка $[\tau_{m-1}, \tau_m]$ к следующему подотрезку $[\tau_m, \tau_{m+1}]$ тот из коэффициентов a(t), b(t), c(t),который может выбираться произвольным на этом подотрезке (например, b(t) в (8)) выбираем произвольной непрерывной функцией, но такой, чтобы ее значение в точке $t= au_m$ совпадало с уже определенным на предыдущем шаге значением. В результате построим непрерывные коэффициенты a(t), b(t), c(t) системы (5), при которых у нее есть решение $[x(t), y(t), z(t)]^T$.

1. Еругин, Н. П. Книга для чтения по общему курсу дифференциальных уравнений / Н. П. Еругин. – Минск : Выш. школа, 1979. – 489 с.