
Sequential Presentation of Method for Integration
the OWL DL and SWRL Using Protégé-owl API

Khala K.A.
International Research and Training Centre of Information Technologies and Systems

National Academy of Sciences and Ministry of Education of Ukraine,
Kyiv, Ukraine

Email: cecerongreat@ukr.net

Abstract—This paper is devoted to the description of a method
of integration of OWL DL and rules with sequential presentation.
In article need of similar integration and semantics of OWL DL
are analyzed; the method on integration of OWL and rules with
use of language of the rules SWRL is provided.

Keywords—OWL; Markup Language; SWRL; case based rea-
soning; reasoned; knowledge acquisition system; Protege ontology
editor

I. INTRODUCTION

In recent years, many formal ontologies were offered as the
solution of problems of the description for difficult spheres of
knowledge. Well thought over ontologies possess a row of the
positive moments, including:

1) an opportunity to define controlled dictionaries of
terms;

2) ability to inherit and expand the existing conditions;
3) an opportunity to declare correlations between the

existing conditions;
4) an opportunity to add the new relations, on the basis

of reasonings according to the existing terms.

By means of the technologies known under the general
name Semantic Web, in particular the OWL [1] language, re-
searchers can spread and be divided ontologies by all scientific
community. Though there is a row of high-quality ontologies,
scientists are far from implementation of all advantages of their
use, and still there are opportunities for significant progress in
this area, especially in application of the formal reasonings.

The unique force of the formal ontologies in the field of
representation of knowledge is their ability to be accented
on logical arguments. Such reasons are carried out with use
description logicians (DL), forms of the logic developed for
reasons about objects as separately and about classes of ob-
jects. The software under the name the moralist (Hermit, Pellet
or Fact++) uses rules DL for execution of specific operations
over knowledge bases [2]. The most important of them is:

1) coherence check: combining of ontological model
with rules DL;

2) check of an consistency: ability for the described
classes to be implemented by real copies;

3) classification: extension of the relations between ob-
jects which were brought out of the relations in an
explicit form.

The OWL language offers rich property set, but apart from
a set of relational properties of varieties of the OWL languages,
they doesn’t envelop all range of indicative opportunities for
the relations of objects which can be constructed.

This article is devoted to the description of a method of
integration of OWL DL and rules. For the solution of an
objective, first of all, it is necessary to consider a question
of feasibility of similar integration, then in details to analyze
features of semantics of OWL DL. In the inference the method
of integration of OWL and rules, SWRL (Semantic Web Rule
Language) will be provided.

Frequent to model many processes in knowledge domain
better with use of declarative approach and rules which results
in interest in the systems based on rules. However, a possibility
of interaction among a set of the existing systems based on
rules limited. The SWRL technology [3] became the first step
as based on the combining OWL with the rules Markup Lan-
guage [4]. The combining OWL and SWRL gives opportunities
of carrying out a logical output outside the opportunities of
classification which are built in the description the logician,
realized by OWL.

II. USE OF A COMBINATION OF OWL DL AND RULES

There are several reasons, for a choice of the OWL DL
language as a formalism of model (legal) knowledge. First
a key role is played by interchangeability and solubility.
Secondly, among OWL family of languages, OWL DL is the
most indicative dialect which remains solvable.

However there is one lack of OWL DL – limitation of
its expressiveness, therefore, it needs to be expanded. One of
methods consists in its extension using rules. The rule is a
formula of a look:

ϕ1 ∧ ... ∧ ϕk → ψ

where ϕ1 ∧ ... ∧ ϕk → ψ is a body, and ψ according to
governed headed . The sense of the rule is that "every time
when the body of the rule is true, the head will accept value
truly too".

The choice governed as extension for OWL isn’t accidental.
First, integration of OWL (DL) into rules gives so indicative
language as logic of first order (FOL – First Order Logic).
Secondly, OWL DL well is suitable for expression of taxonom-
ical, terminological or encyclopedic knowledge while rules can

139

Би
бл
ио
те
ка

 БГ
УИ
Р

express configurations of concepts and properties which can’t
be reduced to taxonomical classification, and it is necessary
to express these configurations which OWL DL can’t express
[1,5].

For example, we will consider (informally expressed) the
rule:

If the judge condemns the innocent,
then he is unfair to this person

Which conversion to FOL looks as follows:

∀x, y : Judge(x) ∧ condemn(x, y) ∧ Innocent(y)→
unjust(x, y)

The example contains a ratio between concepts and prop-
erties which are necessary, but which OWL DL isn’t capable
to express. The intuitive reason is rather simple: to clarify that
someone is a judge, the innocent, etc. (atoms in a rule body),
is a subject of taxonomical knowledge and reasonings.

From the formal point of view, the shortcoming is caused
by inability of OWL to cope with variables. Because in the rule
variables are higher x, at are transferred from a body to the
head, and OWL DL isn’t able to cope with such transmission.
Unlike it, the rule, such, as

If someone made action which isn’t authorized,
then he made violation

Which are represented to FOL as:

∀x, y : Person(x) ∧Action(y) ∧Disallowed(y)→
commit(x, violation)

It can be expressed in OWL as:

Person u ∃perform.Action uDisallowedPerson u
∃.commit u V iolation.

Let’s pay attention that in the last example only one
variable is separated between a body and the head of this rule.
Thus, it is possible to make two preliminary remarks:

• if at least one variable is separated between a body
and the head of the rule, then such rule OWL DL
represented;

• if more than one variable are the general, then the rule
can’t be OWL DL represented [6].

Thus, it was shown that there are rules which can’t be
expressed in OWL DL. From here need in a research of how
to integrate OWL and rules follows [7].

III. SYNTAX AND SEMANTICS OF OWL DL

In OWL Dictionary

V ::= VL ∪ VURI

where VL represents a set of literals and VURI URI great
number of references. The set of VURI is created as follows:

• VI , a set of separate names, for example, Pavlo;

• VO, a set of names of ontologies, as a rule, consisting
of the URL addresses specifying where ontologies are
stored;

• VIC , a set (personal-) class names, for example, owl :
Thing, owl : Nothing;

• VDC , a set of class names of data types, for example,
rdfs : Literal, xsd : gDay, xsd : integer;

• VIP , a set (personal-) names of properties, for exam-
ple, has the father;

• VDP , a set of names of property of data types, for
example, height in meters;

• VAP , a set of names of properties of summaries, for
example, owl : label, owl : seeAlso;

• VOP , a set of names of properties of ontologies, for
example, owl : import.

Symbolic circuit in this case following: for use of a C class;
for property P ; for data type D; for a personal object I; for
summaries of A; for ontology O. For users, familiar with FOL,
the great number of VI represents a set of separate constants;
VIC and VDC represent sets of unary predicates (classes);
VDP , the VIP , VAP represent sets from dyadic predicates
(properties). The single complexity of the OWL DL dictionary
is that one - and dyadic predicates are subdivided depending on
whether they belong to copies/objects, data types, summaries
or ontologies. Besides, OWL the logical dictionary consists of
characters for creation of classes, i.e., u, t, ,̄ ∃, ∀, and also
characters for a creation formula, i.e. v and .

Now we will pay attention to syntax of OWL, i.e. how
to construct terms (atomic classes or difficult classes) and
formulas (to OWL axioms and the facts).

The set of the classes OWL recursively is determined by
the following rule:

QWL− Class ::= C|T | ⊥
|C̄|C1 u C2|C1 t C2|∀P.C|∃P.C|∀T.D|∃T.D| ≤ nPint| ≤

nT |OneOf(i1, ..., ik)|OneOf(l1, ..., lk)

Where C designates a class (atomic or complex); P ∈
VIP atomic property, D ∈ VDC data type class; and T ∈
VDP property of data type. Characters> and ⊥ aren’t
constrained by owl : Thing and owl : Nothing. Pint means
that property P isn’t transitive property or isn’t sub-property
of transitive property. The predicate of OneOf is a concept of
the designer who provides lists of separate names i or literals
of I .

Now we will provide OWL semantics. First, we will define
the OWL model, namely function of interpretation for atomic
classes, data types, properties, etc. Then we will continue this
function of interpretation of difficult classes. And, at last, we
will define truth conditions for OWL axioms and the relations
of the logical investigation between ontologies.

OWL the MOWL model represents a triple
〈R,RD, RO, IC , IP , II , IL〉. The set of R is area of
resources, with RO ⊆ R a set of objects or separate copies,

140

Би
бл
ио
те
ка

 БГ
УИ
Р

and RD ⊆ R a set of data types or literal values. Let’s pay
attention that RD ∪ RO = �. Every II is interpretation of
function for classes, properties of separate names and literals.
More precisely:

• IC(owl : Thing) = RO ⊆ R;

• IC(owl : Nothing) = ⊆ R;

• IC(owl : Literal) = RD ⊆ R;

• IC : VC → ρ(RO);

• IC : VD → ρ(RD);

• IP : VDP → ρ(RO ×RD);

• IP : VIP → ρ(RO ×RO);

• IP : VAP ∪ rdf : type→ ρ(R×R);

• IP : VOP ∪ rdf : type→ ρ(R×R);

• II : VI → RO;

• IL : VL → RD.

Below in tab.1 the recursive extension of difficult classes
is given.

Table I. THE RECURSIVE EXTENSION OF DIFFICULT CLASSES

Syntax Semantics
C RO \ IC(C)

C1 u C2 IC(C1) ∩ IC(C2)
C1 t C2 IC(C1) ∪ IC(C2)
∀P.C |o ∈ RO : 〈o, o′〉 ∈ IP (P)⇒ o′ ∈ IC(C) for all o′|
∃P.C |o ∈ RO : 〈o, o′〉 ∈ IP (P)o′ ∈ IC(C), for some o′|
n ≤ P |o ∈ RO : |o′ : 〈o, o′〉 ∈ IP (P)| ≤ n|
∀T.D |o ∈ RO : 〈o, d〉 ∈ IP (T)⇒ d ∈ IC(D) for all d|
∃T.D |o ∈ RO : 〈o, d〉 ∈ IP (T)d ∈ IC(D), for some d|
n ≤ T |o ∈ RO : |d : 〈o, d〉 ∈ IP (T)| ≤ n|

OneOf(i1, ...ik) |(II(i1), ..., II(ik)|
OneOf(l1, ...lk) |(IL(l1), ..., IL(lk)|

Consistencies and logical consequence fitting ontology are
defined as follows: considering the dictionary V and ontology
of O ::= T − axioms ∪A− axioms, we have

MOWL| = O iff MOWL| = ψ, for all ψ ∈ O

and any linguistic element in O is supported in V

O| 6=⊥ iff MOWL| = O, for some MOWL

O| = O′ iff MOWL| = O ⇒MOWL| = O′, for all MOWL

IV. SYNTAX AND SEMANTICS OF SWRL

A. OWL DL and ML Rules

In this section it will be a question about distribution of
OWL DL on SWRL which represents a combination from
OWL DL and ML Rules (Rule Markup Language). Rules
are defined as: prior and posteriori. If all operators in the
previous expression are defined as truthful, then all statements
in a further expression applicable. Thus, new properties can
be appropriated to copies, in the ontology based on a current
status of the knowledge base. SWRL also defines library of
embedded functions which can be applied to copies. They
include numerical comparing, simple arithmetical actions and
manipulation with lines, temporal functions.

Semantics is based by SWRL on OWL DL so doesn’t
support direct reasons about classes and properties. The rule
SWRL contains the previous part which is mentioned as a
body, and the following part which is mentioned as the head.
Both the body and the head are formed from the positive
conjunction of atoms:

atom ∧ atom...⇒ atom ∧ atom

While SWRL doesn’t support objections of atoms or an
objection as a failure or a disjunction, it supports a classical
objection. For example, programmer (?P) represents atom
where the programmer is the class name OWL, and ?P is
replaceable that represents OWL an individual. Informally the
rule SWRL can be read that if all atoms in a prior part truthful,
then, the following part, also be truthful. There are seven
types of atoms, a constant look P (arg1, arg2...argh), that is
predicate Pi his arguments:

• class atoms;

• atoms of properties of individuals;

• atoms of properties which are transferred on values,
data;

• atoms of different individuals;

• atoms of similar individuals;

• built-in atoms;

• data span atoms.

DLP because it saves complete expressiveness of DL in
addition with language of rules is suitable for obtaining bigger
expressiveness, SWRL more, than. For this reason, strongly
safe subset of SWRL as the best combination of OWL and
rules as it saves solubility in case of minimization of losses in
expressiveness is represented.

B. SHOIN (D)

Syntax of SHOIN (D) – DL is equivalent to syntax of OWL
DL, and is finite, isn’t sufficient to write rules. Thus, there
is a need to rely on syntax of FOL. However, considering
that SWRL is own extension of the OWL DL language, it
doesn’t make any sense to express SWRL of a formula partially
in syntax of DL and partially in syntax of FOL. Fortunately,
there is a simple transformation between the DL formulas and
formulas of FOL [8]. Further we will assume that everything
SWRL of a formula express in syntax of FOL, according to
the equivalence given in [9,10].

The SWRL dictionary is OWL DL of the dictionary V with
adding of sets:

• VIX for the separate variables designated through x,
y, z;

• VDX for the variables of data type designated through
m,n;

• Vbuilt−in for the built-in names.

Any variable in VIX or a name in VI will be called the
term an object, and we will designate through t with indexes if

141

Би
бл
ио
те
ка

 БГ
УИ
Р

it is necessary. The term data type, we will designate through
V , either a literal in VL or a variable of data type in VDX .

The logical SWRL dictionary expands OWL logical the
dictionary with the help → and ∧.

As SWRL is approved in FOL, its logical lexicon is
equivalent to FOL, namely the functional sheaves (∧,∨,→,̄)
and quantifiers (∃, ∀).

The set of SWRL atoms is determined by the following
rule:

SWRL− atom ::= C(t)|D(v)|P (t1, t2)|T (t, v)|t1 = t2|t1 6=
t2

where With represents the class OWL (atomic or complex);
P ∈ VIP OWL atomic property, D ∈ VDC class OWL data
type; and T ∈ VDP property OWL data type.

The rule set of SWRL is the smallest set constructed of
SWRL atoms, such where each element has the form:

A1 ∧ ... ∧A2 → A

where Ai and A SWRL atoms. And the head governed;
and (perhaps empty) finite connection A1 ∧ ... ∧ Ak is a rule
body. We will designate rules through r. There is k universal
quantifiers which determine volume by all rule and it connects
variables in the rule. X it is possible to set somehow as they
are only universal quantifiers, and their changeover won’t enter
errors.

• classes OWL (i.e. their FOL conversion);

• OWL axioms and facts (i.e. their FOL conversion);

• SWRL of rules.

The SWRL model is designated through MSWRLg expands
the MOWL models with function of assignment of

g ::= gI ∪ gD

where:

• gI : VIX → RO;

• gD : VDX → RD.

The relations of SWRL expand OWL relations as follows:

MSWRLg| = C(t) iff gI ∪ II(t) ∈ IC(C)

MSWRLg| = P (t1, t2) iff gI ∪ II(t) ∈ IC(C)

MSWRLg| = t1 = t2 iff 〈gI ∪II(t1), gI ∪II(t2)〉 ∈ IP (=)

MSWRLg| = t1 6= t2 iff 〈gI ∪II(t1), gI ∪II(t2)〉 6∈ IP (=)

MSWRLg| = C(v) iff gD ∪ IL(v) ∈ IC(C)

MSWRLg| = T (t, v) iff 〈gI ∪ II(t), gD ∪ IL(v)〉 ∈ IP (D)

MSWRLg| = A1 ∧ ... ∧A2 → A

iff MSWRLg| = A1 ∧ ... ∧A2 ⇒MSWRLg| = A

C. Protege-owl API

Such popular development environment of ontologies as
Protégé includes plag-in Swrltab, for creation and processing
of the rules SWRL [3,10]. SWRL is supported by the moralist
of Pellet to the place where rules can be defined as "Dl-safe".

Protégé [11] represents a flexible platform which prepares
for development of arbitrary models of managed applications
and components. It has an open architecture which allows
programmers to integrate plagn which can appear in the form
of separate inserts, specific components of the interface of the
user (vdzheta), or carry out any other tasks on the current
model.

Protege provides several extension points where developers
can dynamically add components as so-called plug-ins. The
following fig.1 illustrates the types of plug-ins that you can
create for the Protege-OWL editor.

Figure 1. Plug-ins that can be created for the Protege-OWL editor

• S - Slot widget plug-ins are a Core Protege feature.
A slot widget is a plug-in that can display and edit
a property value on a form. Examples of default slot
widgets include the list of disjoint classes, the con-
ditions widget, and the annotation properties widget.
You can create your own slot widgets and add them
to the forms using the Forms tab.

• P - Project plug-ins are a Core Protege feature. They
allow programmers to execute arbitrary code when
a project is created, loaded, or closed. In particular,
they can be used to add menus or toolbar buttons.
They can also be used to attach arbitrary listeners to
a knowledge base, such as agents.

• F - Resource action plug-ins can appear in the right-
click menu of a selected class, property, or individual,
or in the lower left corner of a form (as shown by
the second ‘F’ above). A resource action plug-in must
be a subclass of ResourceAction and you need to add
an entry "ResourceAction=True" to your manifest file.
Then, the ResourceAction is able to decide whether it
wants to appear in the context menu, or also in the
icon bar at the bottom left corner of a form.

142

Би
бл
ио
те
ка

 БГ
УИ
Р

• I - Resource display plug-ins can be used to add
arbitrary components to the lower right corner of each
form. You need to subclass ResourceDisplayPlugin
and add an entry "ResourceDisplayPlugin=True" to
your manifest file. Then you get a reference to a
resource, e.g., an owl:Class, and a JPanel in which
you can add buttons or other small components.

• O - Ontology test plug-ins are plug-ins that will be
executed when the user presses the test ontology
buttons. Each test must be a subclass of OWLTest
and requires a manifest entry (check the Protege-OWL
editor’s manifest file for examples). The tests can
return a test result object, which is then used to display
results to the user.

• R - Result panel plug-ins are arbitrary components that
can be displayed as a tab at the bottom of the screen.
Examples include the "Find Usage" results, the classi-
fication output, and the ontology test results. You must
subclass ResultsPanel and can then use some standard
services such as selecting a highlighted object from
there. You can add or remove your result panels as a
result of some action using the ResultsPanelManager.

• C - Conditions widget extension plug-ins can be
installed by a project plug-in to add additional
tabs to the conditions widget. This is currently
in its infancy, but you can call ConditionsWid-
get.addNestedWidgetFactory to add your panel, e.g.,
to display the abstract syntax.

The Protege Programming Development Kit (PDK) has
a lot of general information on how to write, package, and
distribute plug-ins. The best way to get started is to examine
existing plug-ins that were written for the Protege-OWL editor,
e.g., OWLViz, OWLDoc, Protege Wizards, etc. Pay particular
attention to the manifest and protege.properties files for these
plug-ins. The latter is needed for your plug-in to declare a
dependency on the Protege-OWL editor.

Protege-owl API [12] is open source code of Java library
for OWL and RDF(S). API provides classes and methods for
loading and saving the OWL files, requests and handling the
OWL models of data, and also for execution of reasons on
the basis of the mechanism DL. Besides, API is optimized for
implementation of the user graphic interfaces.

Jena [13] is one of the most widely used by the Java API,
for RDF and OWL, providing services for representation of
model, parse, persistence of the database, execution of requests
and some instruments of visualization. Protege-owl API (v 3.4)
and lower versions integrated with Jena, and the Jena ARP
analyzer is used by Protégé-owl parcer.

The Jena inference subsystem is designed to allow a range
of inference engines or reasoners to be plugged into Jena. Such
engines are used to derive additional RDF assertions which
are entailed from some base RDF together with any optional
ontology information and the axioms and rules associated with
the reasoner. The primary use of this mechanism is to support
the use of languages such as RDFS and OWL which allow
additional facts to be inferred from instance data and class
descriptions. However, the machinery is designed to be quite

general and, in particular, it includes a generic rule engine that
can be used for many RDF processing or transformation tasks.

The overall structure of the inference machinery is illus-
trated at Fig.2.

Figure 2. Overall structure of inference machinery

Applications normally access the inference machinery by
using the ModelFactory to associate a data set with some
reasoner to create a new Model. Queries to the created model
will return not only those statements that were present in the
original data but also additional statements than can be derived
from the data using the rules or other inference mechanisms
implemented by the reasoner.

As illustrated at the Fig. 2 the inference machinery is
actually implemented at the level of the Graph SPI, so that
any of the different Model interfaces can be constructed
around an inference Graph. In particular, the Ontology API
provides convenient ways to link appropriate reasoners into
the OntModels that it constructs. As part of the general RDF
API we also provide an InfModel, this is an extension to the
normal Model interface that provides additional control and
access to an underlying inference graph.

The reasoner API supports the notion of specializing a
reasoner by binding it to a set of schema or ontology data
using the bindSchema call. The specialized reasoner can then
be attached to different sets of instance data using bind calls.
In situations where the same schema information is to be
used multiple times with different sets of instance data then
this technique allows for some reuse of inferences across the
different uses of the schema.

To keep the design as open ended as possible Jena also
includes a ReasonerRegistry. This is a static class though which
the set of reasoners currently available can be examined. It is
possible to register new reasoner types and to dynamically
search for reasoners of a given type. The ReasonerRegistry
also provides convenient access to prebuilt instances of the
main supplied reasoners.

Interfaces of the Protégé-owl model are located in an
inheritance hierarchy. The review of available interfaces can
be found in [14], with the basic interface of all RDF resources
from which the received sub-interfaces for classes, properties
and copies (objects).

There is an accurate discrepancy in model between the
named classes and anonymous classes. The named classes
are used for creation of separate copies while anonymous
classes are used for determination of logical characteristics

143

Би
бл
ио
те
ка

 БГ
УИ
Р

(restrictions) from the called classes. Classes which are logi-
cally defined can be used for creation of difficult expressions
from restrictions of a class and the named classes. As well
as restrictions, logical classes make a sense only if they are
connected to the defined named class or property.

In SWRL, predicate characters can include the classes
OWL, properties or data types. Arguments can be separate
copies or value of the data OWL, or replaceable, related. All
replaceable in SWRL are considered as universal quantifiers,
from them by restriction of volume of this rule.

The built− in SWRL are predicates which recognize that
they undertake this one or several evaluated arguments. A row
of the basic embedded functions for mathematical and urgent
operations contain in SWRL Proposal. These built-in modules
are defined in the swrlb.owl [15] file. By agreement, basic
SWRL swrlb space name qualifier can precede all.

V. CONCLUSION

The article discussed issues related of integration of OWL
DL and rules were considered. The explanation of semantics
of OWL DL with determination of the OWL model, namely –
interpretation functions, and with determination of conditions
of truth for OWL axioms and the relations is given. And in
the inference the method of integration of OWL and rules with
SWRL is provided.

Advantages of use of SWRL were given in article that
at the moment is the most widely used language of rules
in community Semantic Web. It is described possibilities of
Protégé-owl AP I as the popular development environment of
ontologies of Protégé includes plag-in Swrltab, for creation
and processing of the rules SWRL. There was analyzed that
SWRL is supported by moralists of Protégé to the place where
rules can be defined as "Dl-safe".

REFERENCES

[1] World Wide Web Consortium (W3C): OWL Web Ontology Language
Guide [Electronic resource] // W3C Recommendation for a new version
of OWL. – Mode of access: https://www.w3.org/TR/owl-guide. – Title
from the screen.

[2] World Wide Web Consortium (W3C): OWL Web Ontology Language
Guide [Electronic resource] // W3C technical report and recommendation
for OWL. – Mode of access: https://www.w3.org/TR/owl-guide/. – Title
from the screen.

[3] World Wide Web Consortium (W3C): OWL Web Ontology Language
Guide [Electronic resource] // W3C technical report and recommendation
for SWRL. – Mode of access: https://www.w3.org/TR/swrl-guide/. – Title
from the screen.

[4] Rule Markup Language [Electronic resource] // Rule Markup Language.
– Mode of access: http://www.ruleml.org. – Title from the screen.

[5] Breuker J., Use and reuse of legal ontologies in knowledge engineering
and information management [Text] / J. Breuker, A. Valente, R. Winkels
// Benjamins V. R. Law and the Semantic Web, LNAI 3369. – Berlin:
Springer, 2005. – 36–64 pp.

[6] 6Motik B., Structured objects in OWL: Representation and reason-
ing [Electronic resource] / B. Motik, B. C. Grau, U. Sattler //
WWW 2008, Refereed Track: Semantic - Data Web - Semantic Web,
April 21-25, 2008: Beijing, China. – Mode of access: WWW.URL:
https://www.cs.ox.ac.uk/files/4557/p555-motikA.pdf. - Last access: 2012.
– Title from the screen.

[7] Khala K. The description of a method of integration of OWL DL and
rules with sequential presentation [Text] / K. Khala // Intelligent analysis
of information, research papers of XVI International Conference, IAI-
2016 behalf T.A.Taran (May 18-20, 2016., Kyiv).-K., 2016. - 274-280
pp.

[8] Volz R., Web Ontology Reasoning with Logic Databases [Text]: PhD
thesis Institute AIFB, University of Karlsruhe, 17.02.04 / Prof. Dr. Rudi
Studer. – Karlsruhe, 2004. – 287p.

[9] World Wide Web Consortium (W3C): Semantic Web
Rule Language Combining OWL and RuleML [Electronic
resource] // W3C proposal for a SWRL. – Mode of access:
https://www.w3.org/Submission/2004/SUBM-SWRL-20040521. –
Title from the screen.

[10] SWRLJessTab Protégé plug-in [Electronic resource] // Plug-in
for Protégé Editor. – Mode of access: http://protege.cim3.net/cgi-
bin/wiki.pl?SWRLJessTab. - Last access: 2015. – Title from the screen.

[11] Protégé [Electronic resource] // A free, open-source ontology editor
and framework for building intelligent systems. – Mode of access:
http://protege.stanford.edu/. – Title from the screen.

[12] 12Protégé-OWL API [Electronic resource] // Protégé-OWL API. –
Mode of access: http://protege.stanford.edu/plugins/owl/api/. – Title from
the screen.

[13] Apache Jena [Electronic resource] // Apache Jena. – Mode of access:
http://jena.sourceforge.net/. – Title from the screen.

[14] Sanchez-Macián, A., Pastor, E., Vergara, J. de L., Lopez, D.
(2007). Extending SWRL to Enhance Mathematical Support.
Web Reasoning and Rule Systems (p. 358–360). Retrieved from
http://dx.doi.org/10.1007/978-3-540-72982-2-30.

[15] SWRL swrlb [Electronic resource] // SWRL swrlb. – Mode of access:
http://www.w3.org/2003/11/swrlb. – Title from the screen

ПОСЛЕДОВАТЕЛЬНОЕ ИЗЛОЖЕНИЕ МЕТОДА
ДЛЯ ИНТЕГРАЦИИ OWL DL И SWRL С
ИСПОЛЬЗОВАНИЕМ PROTÉGÉ-OWL API

Хала Е.А.

Эта статья посвящена описанию метода интеграции
OWL DL и правил, с последовательным изложением.
В статье описывается необходимость подобной интегра-
ции, и анализируются семантики OWL DL, а также
приводиться метод по интеграции OWL и правил с
использованием специального языка правил SWRL.

144

Би
бл
ио
те
ка

 БГ
УИ
Р

