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Analytic properties of solutions belonging to a family of third-order 
nonlinear dynamical systems with no chaotic behavior
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The Painleve analysis of solutions is made to a family of dissipative third-order 
dynamical systems showing no chaotic behavior. It is found, that none of the systems 
under study is of the Painleve type. Moreover, two systems from the above family 
are characterized by the fact that one of their solution components has no movable 
critical singular points at all.

One of the imporatant events in classical nonlinear physics of mid-twentieth century was the 
realization that nonlinear determenistic equations could have chaotic solutions that exhibited 
both a sensitive dependence on initial conditions and long-term unpredictability. An interesting 
and remaining to be solved is the problem of identifying minimum necessary conditions for chaos.

In [1], computer simulation was used to obtain 19 third-order dynamic systems with complex 
chaotic behavior, which are algebraically simpler than the well-known Lorenz and Rossler ones. 
The distinctive difference of the above Sprott systems is that their right-hand parts contain either 
6 components and one quadratic nonlinearity or 5 components and two quadratic nonlinearities.

1. The authors of [2] proved that none of the systems listed below had chaotic behavior.

X  =  y2 — X,  у =  Z,  Z — X. (1.1)

X  =  y 2 +  z ,  у =  X ,  z  = — z . (1.2)

x  =  y z - x ,  y - х ,  z - y . (1.3)

X =  y 2 , y =  X  +  Z,  z  =  - z . (1.4)

x =  y2, У =  Z - y ,  Z =  X. (1.5)

x =  y 2 , y  =  z ,  z  =  x  — z . (1.6)

X  =  y z ,  У =  X,  z  =  x  — z . (1.7)

x  =  y z ,  y  =  x ,  z  =  y - z . (1-8)
Note, that the right-hand parts of each of dissipative systems (1.1)—(1.8) contain one 

quadratic nonlinearity. Assuming the independent variable t to be complex, let us determine 
whether the general solution of the systems (1.1)—(1.8) has no moving critical singular points, 
that is, whether the so called Painleve property is fulfilled for them.

The following statements are true
Theorem  1. None of the systems (1.2), (1.4) passes the Painleve test and they do not 

possess the Painleve property. At the same time, a component (z) of these systems has no 
movable critical singular points at all.

Theorem  2. None of the systems (1.1), (1.3), (1.5)—(1.8) passes the Painleve test and 
they do not have the Painleve property.

Theorem  3. Equation
У У  +  У У  -  У У ~ У 2У  =  0 (1)
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is not a Painleve-type equation.
The validity of this statement follows from the fact that the system (1.7) is equivalent to 

equation (1).
2. In [2], it is also proved the absence of chaos in systems of differential equations

x =  y 2 +  yz, y = x , z — —z. (2.1)

X =  y 2 +  Z2, y =  x, z =  —z. (2.2)

x =  y 2 -  X, У =  xz, z =  ey. (2.3)

x =  y 2 -  X, у  =  XZ, z =  kz. (2.4)

x =  y 2 -  X, У =  z2, z =  x. (2.5)

x  =  y2 +  У. У =  xz, z =  —z. (2.6)

x =  y 2 +  г, У =  X2, Z — —z. (2.7)
2x =  y +  z, У =  xz, z =  —z. (2.8)

X =  yz -  X, у =  x 2, z =  ex. (2.9)

x =  yz  — X, У =  x 2, Z =  y. (2.10)

X =  yz -  X, У =  x 2, z =  kz. (2.11)

X =  yz -  X, у  — exz Z =  y. (2.12)

X =  yz -  X, y  =  z2, z — ex. (2.13)

x =  ey -  X, У =  xz, z =  x 2. (2.14)

x =  ey -  X, У =  xz, z =  y 2. (2.15)

X =  у -  X, y =  z2, z =  x 2. (2.16)

x - y -  X, y  =  z2, z =  xy (2.17)

where к is a parameter (k < 1) and e2 — 1.
Systems (2.1)—(2.17) are dissipative systems, and their right-hand parts contain two 

quadratic nonlinearities.
The following statements are true
Theorem  4. None of the systems (2.1), (2.2), (2.4), (2.6)—(2.8), (2.11) is of the Painleve 

type. At the same time, a component (z) of these systems has no movable critical singular points 
at all.

Theorem  5. None of the systems (2.3), (2.5), (2.9), (2.10), (2.12)—(2.17) is of the Painleve 
type.

Theorem  6. The system (2.3) is equivalent to equation

z z  =  zz — zz +  ez2z2. (2)

Theorem  7. The system (2.9) is equivalent to equation

z z  =  zz — zz +  ez2z2 +  z2. (3)

Theorem  8. The system (2.12) is equivalent to equation

z'z =  zz — zz +  ezz3. (4)
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Theorem  9. The systems (2.13) and (2.14) are equivalent to equation

ww =  ww — ww +  w2 +  £wA (5)

by z and x respectively.
Theorem  10. The system (2.15) is equivalent to equation

x'x =  xx — xx  + x 1 + ex2(x +  x2). (6)

Theorem  11. None of the equations (2)—(6) is of the Painleve type.
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Vlasov-Maxwell-Einstein equation and analysis of Л-term with the help of 
kinetic theory and post-Newtonian approximation
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The possibility to obtain an analog of Milne-McCrea model with the help of Vlasov- 
Poisson equation is considered. The simplest nonrelativistic analog of Maxwell- 
Einstein action is introduced, from which we deduce Vlasov-Poisson-Poisson equation 
for an electrostatics with gravitation. The nonrelativistic limit of Einstein-Gilbert 
action is studied and Vlasov-Poisson-Poisson equation is also obtained with cosmo
logical Л-term then the accounting of electromagnetism is added. An equation of 
Vlasov type is derived which can be proposed for dark matter and perhaps for dark 
energy.

The nonrelativistic analog of Friedmann equation is a self-gravitating sphere or Milne- 
McCrea model [1]. At the same time Friedmann model can be it is obtained as the exact 
solution of Vlasov-Poisson equations for system of massive particles:

m  Ч т ’Ш ' Н 1 '1 ) =0' =  (J)

Solutions of Milne-McCrea type can be found by substitution / (x ,  p, t) =  f  S(x — X (q, t))d(p — 
P(q, t)) p(q)dq, using Lagrangian coordinates q [2]. The task of obtaining of the relevant solution
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