2013 № 7 (77)

УДК 621.373.5

ОСОБЕННОСТИ ХАРАКТЕРИСТИК ВНЕШНЕЙ СИНХРОНИЗАЦИИ ТВЕРДОТЕЛЬНЫХ ГЕНЕРАТОРОВ

А.Я. БЕЛЬСКИЙ, С.В. ДРОБОТ, Е.Н. ЗАЦЕПИН

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 5 апреля 2013

Проводится теоретический анализ влияния внешнего высокостабильного сигнала на полосу синхронизации синхронизируемого генератора с учетом его нелинейных параметров. Представлено выражение для расчета частотных шумов синхронизируемого генератора. Результаты экспериментальных исследований позволяют выбрать необходимые значения коэффициента синхронизации и полос синхронизации. Показано, что при определенных режимах, несмотря на уменьшение ЧМ-шумов, АМ-шумы могут значительно увеличиться.

Ключевые слова: анализ характеристик синхронизизируемого генератора, частотные и амплитудные шумы.

Введение

Мощные генераторы чаще всего имеют невысокую долговременную и кратковременную стабильность частоты, так как работают при сильном разогреве активного элемента и их конструкций. Как известно, одним из эффективных методов уменьшения нестабильности частоты является синхронизация внешним высокостабильным сигналом, что позволяет получить одновременно не только высокий уровень мощности, но и высокую стабильность частоты. Требуемая мощность синхронизирующего сигнала может быть на несколько порядков ниже, чем синхронизируемого генератора. Маломощные генераторы позволяют более просто, чем мощные, осуществить термостатирование или термокомпенсацию режима.

В данной работе определены необходимые уровни относительной мощности синхронизирующего сигнала и полосы синхронизации, обеспечивающие заданное снижение частотных (фазовых) флуктуаций синхронизируемого генератора на МЭП-диоде, влияние нелинейных свойств диода и фиксирующей способности колебательной системы на характеристики синхронизации, показано также одновременное воздействие синхросигнала не только на частотные, но и на амплитудные флуктуации синхронизируемого генератора. В других же работах исследуется влияние синхросигнала только на частотные флуктуации, что не всегда является достаточным, так как амплитудные шумы определяют чувствительность гетеродинных радиоприемных устройств СВЧ.

Теоретический анализ

Схема синхронизируемого диодного генератора может быть изображена в виде параллельно соединенных активной и реактивной составляющих G_{π} и B_{π} , СВЧ- системы G_{s} и B_{s} и генератором тока I_{Γ} (рис. 1). На этом рисунке адмитанс диода предполагается нелинейным и частотнозависимым $G_{\pi} = f(U,\omega)$, $B_{\pi} = f(U,\omega)$, а адмитанс СВЧ-системы — только частотнозависимым $G_{s} = f(\omega)$, $G_{s} = f(\omega)$. Синхросигнал представлен генератором тока $G_{s} = f(\omega)$ захвате генератора внешним сигналом частота колебаний синхронизируемого генератора становится равной частоте синхросигнала. Выполнение баланса фаз и амплитуд на новой

частоте, отличающейся от частоты свободных автоколебаний на величину $\Delta \omega$, означает изменение активной и реактивной составляющих адмитанса синхронизируемого генератора Y в соответствии с выражением

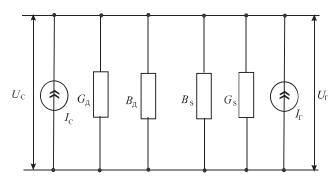


Рис. 1. Эквивалентная схема синхронизируемого генератора

$$dY = dG + jdB, (1)$$

где $G = G_{\text{Д}} + G_{\text{S}}$ и $B = B_{\text{Д}} + B_{\text{S}}$ – суммарные величины активной и реактивной составляющих проводимости генератора.

Изменение суммарной проводимости вызвано воздействием внешнего сигнала. Энергия, возвращающая синхронизируемый генератор в режим свободных колебаний, и внешний синхронизирующий сигнал, вызывающий изменение частоты синхронизруемого генератора, уравновешиваются и находятся в противофазе, на основании чего можно записать

$$U_{\Gamma} dY = -I_{C} e^{j\phi} \tag{2}$$

где $I_{\rm C}$ — амплитуда тока синхронизирующего сигнала; U_{Γ} — амплитуда напряжения синхронизируемого генератора.

Раскрывая (2) и раскладывая адмитанс в ряд Тейлора и ограничиваясь первой производной, получим следующие уравнения

$$U_{\Gamma}\left(\frac{\mathrm{d}G_{\Pi}}{\mathrm{d}U}\Delta U + \frac{\mathrm{d}G_{S}}{\mathrm{d}\omega}\Delta\omega\right) = -I_{C}\cos\varphi \tag{3}$$

$$U_{\Gamma}\left(\frac{\mathrm{d}B_{\Pi}}{\mathrm{d}U}\Delta U + \frac{\mathrm{d}B_{\Pi}}{\mathrm{d}\omega}\Delta\omega\right) = -I_{\mathrm{C}}\sin\varphi \tag{4}$$

Решая данную систему уравнений и учитывая, что для генератора на диоде Ганна выполняется условие $dG/d\omega << dB/d\omega$ [1, 2], получим выражение для полосы синхронизации

$$\Delta\omega_{\rm C} = \frac{I_{\rm C}\sin\phi \cdot dG_{\rm A} / dU - I_{\rm C}\cos\phi \cdot dB_{\rm A} / dU}{U_{\rm \Gamma}dB / d\omega \cdot dG_{\rm A} / dU}.$$
(5)

Выражая $dB/d\omega$ через добротность колебательной системы Q_S и переходя от токов и напряжений к мощности, получим

$$\pm \Delta\omega_{\rm C} = \frac{\omega_0 \sqrt{P_{\rm C}/P_{\rm \Gamma}}}{2Q_{\rm S}} (\sin\varphi - \frac{{\rm d}B_{\rm J}/{\rm d}U}{{\rm d}G_{\rm J}/{\rm d}U}\cos\varphi). \tag{6}$$

Из последнего выражения видно, что полоса синхронизации $\Delta\omega_c$ определяется коэффициентом синхронизации $K_C = P_C / P_\Gamma$, добротностью колебательной системы синхронизируемого генератора и отношением производных по амплитуде реактивной и активной составляющих проводимости диода. Как следует из работы [2], это отношение изменяется в пределах от 0,4 до 0,6 при напряжениях смещения, незначительно превышающих пороговое $(1,1...1,5\,U_{\rm пор})$, до 0,1–0,05 при напряжениях $(3...3,5)\,U_{\rm пор}$. Таким образом, величина нелинейности будет влиять в значительной степени на характеристики синхронизации только при малых уровнях превышения пороговой величины напряжения на активном элементе. Так

как при этих условиях $\mathrm{d}B_{\mathrm{J}}/\mathrm{d}U < 0$, то при малых напряжениях на диоде следует ожидать более широких полос синхронизации, чем при больших.

Если разность частот равна 0, то и $\varphi = 0$ [3], тогда необходимый коэффициент синхронизации (K_c), как это следует из выражения (6), определяется следующим образом

$$K_{\rm C} = \frac{P_{\rm C}}{P_{\rm \Gamma}} = 4 \left(\frac{\mathrm{d}G_{\rm A} / \mathrm{d}U \cdot \Delta\omega_{\rm C}}{\mathrm{d}B_{\rm A} / \mathrm{d}U} \cdot \frac{Q_{\rm S}}{\omega_{\rm 0}} \right)^2. \tag{7}$$

Таким образом, коэффициент синхронизации зависит не только от добротности колебательного контура, но и от нелинейных свойств активного элемента сихронизируемого генератора.

На краю полосы синхронизации $\phi = \pi/2$ [3] и выражение (6) переходит в формулу Адлера

$$\pm \Delta \omega = \frac{\sqrt{P_{\rm C} / P_{\rm \Gamma}}}{2Q_{\rm S}}.\tag{8}$$

Фазовый сдвиг у между синхронизирующим и синхронизируемым сигналом определяется следующим выражением [3]:

$$\Psi = \arcsin(2Q_{\rm S} \frac{\Delta F}{f_0} \sqrt{P_0 / P_{\rm C}}). \tag{9}$$

Поскольку ΔF может иметь как положительный, так и отрицательный знак, то максимальный фазовый сдвиг на краю полосы синхронизации составляет $\pm 90^{\circ}$.

Влияние синхронизирующего сигнала на частотные (фазовые) шумы синхронизируемого сигнала можно оценить с помощью выражения [4]:

$$S_{\Sigma}(\Omega) = \frac{(2\Omega/\Delta\omega_{\rm C})^2}{1 - (2\Delta\omega/\Delta\omega_{\rm C})^2 + (2\Omega/\Delta\omega_{\rm C})^2} \cdot S_0(\Omega) + \frac{1 - (2\Delta\omega/\Delta\omega_{\rm C})^2}{1 - (2\Delta\omega/\Delta\omega_{\rm C})^2 + (2\Omega/\Delta\omega_{\rm C})^2} \cdot S_{\rm C}(\Omega), \tag{10}$$

где $S_{\Sigma}(\Omega), S_0(\Omega), S_{C}(\Omega)$ — относительные спектральные плотности мощности частотных шумов в результате воздействия синхронизирующего генератора на синхронизируемый, синхронизируемого в режиме автоколебаний и синхронизирующего соответственно, $\Delta \omega$ — разность частот синхронизируемого в режиме автоколебаний и синхронизируещего, Ω — модулирующая частота шума.

В случае равенства частот генерируемых колебаний шумовые характеристики вблизи несущей частоты определяются уровнем шумов синхронизирующего генератора, а на большом удалении от нее – шумами синхронизируемого. Если частота модуляции намного меньше полосы синхронизации, то степень улучшения шумовых характеристик можно определить по приближенному выражению [1, 4]:

$$S_{\Sigma}(\Omega)/S_0(\Omega) \approx \pi^2 (\Omega/\Delta\omega_C)^2$$
. (11)

Это выражение также показывает, что вблизи несущей имеет место значительное улучшение кратковременной нестабильности частоты и незначительное улучшение на частотах, приближающихся к краю полосы синхронизации.

Экспериментальная часть

Структурная схема для проведения экспериментальных исследований характеристик синхронизации приведена на рис. 2. Сигнал от синхронизирующего генератора (1) через аттенюатор (2) и трехплечий циркулятор (7) подавался на синхронизируемый генератор (4), а затем — на анализатор спектра (5) Уровень мощности синхронизирующего генератора контролировался с помощью направленного ответвителя и измерителя мощности (3). Разность частот и относительные величины сигналов синхронизирующего и синхронизируемого

генераторов определялись с помощью анализатора спектра (5). Исследуемые сигналы подавались на измеритель флуктуаций (6).

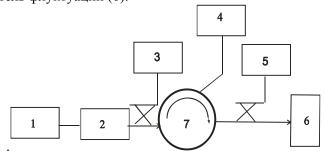


Рис. 2. Схема для исследования характеристик синхронизации

Вид экспериментально исследованных характеристик, показывающих зависимость коэффициента синхронизации от разности частот синхронизирующего и синхронизируемого генераторов, показан на рис. 3.

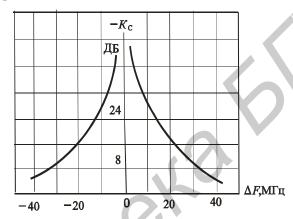
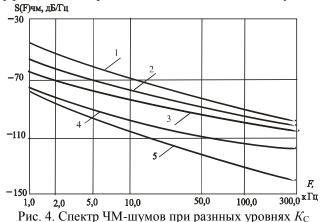



Рис. 3. Зависимость коэффициента синхронизации от полосы синхронизации $K_{\rm C} = f(\Delta F)$

Вид экспериментально исследованных характеристик ЧМ-шума синхронизированного генератора на диоде Ганна при различных уровнях коэффициента синхронизации и совпадении частот ($\Delta\omega=0$) приведен на рис. 4. На этом рисунке кривая 1 соответствует режиму свободных автоколебаний генератора, кривая 5 — синхронизирующему малошумящему генератору, 2 — коэффициенту синхронизации — 50дБ, 3 — коэффициенту синхронизации — 30 дБ и кривая 4 — $K_{\rm C}=-20$ дБ. Из полученных графиков видно, что наиболее сильное подавление частотных шумов происходит вблизи несущей частоты, до примерно десяти килогерц и ослабевает на частотах модуляции несколько десятков килогерц и выше. Для значительного подавления ЧМ-шумов требуемый коэффициент синхронизации составлял величину не менее -20 дБ.

Однако при одновременном исследовании не только частотных, но и амплитудных шумов синхронизируемого генератора выяснилось, что амплитудные шумы могут возрасти и в очень значительной степени (рис. 5). Графики построены при разности частот генераторов 1,5 мГц. Кривая 1 соответствует коэффициенту синхронизации -40 дБ, 2 построена для случая $K_{\rm C} = -20$ дБ, 3 показывает амплитудные шумы синхронизируемого генератора в режиме свободных колебаний, а 4 — АМ-шумы синхронизирующего генератора.На небольшом удалении от несущей частоты увеличение амплитудных флуктуаций составляло величину несколько десятков децибел, — на частотах модуляции несколько сотен килогерц — десять и менее децибел.

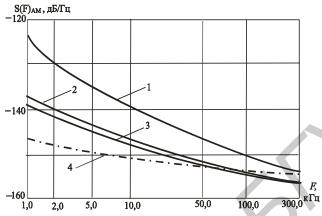


Рис. 5. Спектр AM-шумов при разных уровнях $K_{\rm C}$

Увеличение амплитудных шумов синхронизируемого генератора при воздействии синхронизирующего сигнала можно, по-видимому, объяснить несколькими причинами: биениями их сигналов [5] или преобразованиями частотных шумов в амплитудные на контуре синхронизируемого генератора.

На краю полосы синхронизации, составляющей величину около ± 60 м Γ ц, АМ-шумы преобразования резко возрастали, что иллюстрируется рис. 6.

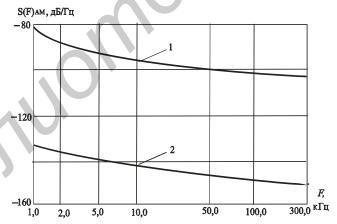


Рис. 6. Спектр АМ-шумов на краю полосы синхронизации: кривая $1 - K_C = -20$ дБ; кривая $2 - K_C = -15$ дБ

Таким образом, на краю полосы синхронизации, несмотря на значительное уменьшение ЧМ-шума (рис. 7) при $K_{\rm C}=-20$ дБ необходимо было увеличить синхросигнал примерно на 5дБ для поддержания АМ-шума синхронизируемого генератора на собственном уровне в режиме свободных колебаний. При совпадении частот генераторов и $K_{\rm C}=-20$ дБ увеличения АМ-шумов синхронизируемого генератора практически не наблюдалось.

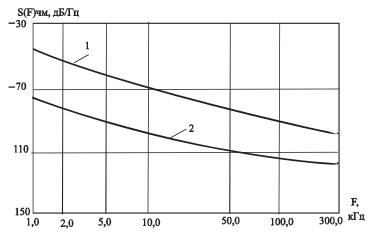


Рис. 7. Спектр ЧМ- шумов на краю полосы синхронизации: кривая 1 – синхронизируемый генератор в режиме свободных колебаний; кривая $2 - K_C = -15$ дБ

Заключение

Таким образом, проведенные исследования характеристик синхронизированных генераторов показали, что для значительного уменьшения уровня ЧМ-шумов (практически до уровня синхронизирующего) и одновременного сохранения уровня АМ-шумов синхронизируемого такими же, как в свободном режиме, приемлемы коэффициенты синхронизации –20...–25 дБ при разности частот порядка 10 МГц (нагруженная добротность колебательной системы синхронизируемого генератора составляла около 40), а для разности частот около 60 МГц требуемый коэффициент синхронизации составлял величину –10...–15 дБ. Коэффициент синхронизации зависит не только от добротности колебательной системы синхронизируемого генератора, но и от степени нелинейности импеданса его активного элемента.

CHARACTERISTICS OF EXTERNAL SYNCHRONIZATION OF SOLID-STATE GENERATORS

A.Ya. BELSKY, S.V. DROBOT, E.N. ZATSEPIN

Abstract

The synchronization coefficients values are calculated for a given synchronization bands with non-linear properties of the synchronized generator. The experimental results show the effect of an external signal not only on phase noise, but also the amplitude fluctuations.

Список литературы

- 1. Фомин Н.Н. // Синхронизация диодных генераторов СВЧ. М., 1974.
- 2. Бельский А.Я., Зацепин Е.Н. // Весці АН БССР. Сер. фіз.-тэхн. навук. 1986. № 2. С. 114–117.
- 3. Adler. R. // Proc. IRE. 1946. Vol. 34. P. 351–357.
- 4. Сугиура Сугиомото // ТИИЭР. 1969. Т. 57, № 1. С. 96–97
- 5. Ашамис А.О., Бригидин А.М // Докл. БГУИР. 2011. № 1 (55). С. 99–105.