УДК 538.956: 538.935: 539.1.04

ВЛИЯНИЕ УСЛОВИЙ СИНТЕЗА НА ЭЛЕКТРОТРАНСПОРТНЫЕ СВОЙСТВА СЕГНЕТОЭЛЕКТРИЧЕСКИХ ПЛЕНОК ЦИРКОНАТА-ТИТАНАТА СВИНЦА

Л.И. ГУРСКИЙ, Н.А. КАЛАНДА^{*}, С.Е. ДЕМЬЯНОВ^{*}, Д.А. ГОЛОСОВ, С.Е. ЗАВАДСКИЙ, А.В. ПЕТРОВ^{*}, Е.В. ТЕЛЕШ, Л.В. КОВАЛЕВ^{*}

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

> ^{*}ГО «НПЦ НАН Беларуси по материаловедению» П. Бровки, 19, Минск, 220072, Беларусь

Поступила в редакцию 24 декабря 2010

Рассмотрено влияние температурной обработки на электротранспортные свойства $PbZr_{1-x}Ti_xO_3$ -слоя в многослойной структуре $Si/SiO_2/Ti/Pt/PbZr_{1-x}Ti_xO_3/Pt$. Установлены различные механизмы электропереноса заряда. Так, после отжига в течение 0,5 ч при температуре 770 К в инертной среде (Ar), механизмом переноса в $PbZr_{1-x}Ti_xO_3$ -слое в интервале температур 280–400 К является туннелирование термически активированных электронов с энергиями выше кулоновского энергетического барьера. В интервале температур 200 – 280 К доминирует перенос заряда путем прыжковой проводимости электронов с переменной длиной прыжка по локализованным состояниям, лежащим в узкой полосе энергий вблизи уровня Ферми. После отжига в течение 0,5 ч при температуре 720 К в окисляющей среде ($pO_2 = (0,21-2,0) \times 10^5$ Па) установлено, что в интервале температур 200–400 К электроперенос заряда в $PbZr_{1-x}Ti_xO_3$ -слое осуществляется также путем прыжковой проводимости с изменяющейся длиной прыжка.

Ключевые слова: PbZr_{1-x}Ti_xO₃-слой, многослойная структура, электроперенос, туннелирование электронов, прыжковая проводимость.

Введение

Многослойные структуры на основе твердых растворов (PbZr_{1-x}Ti_xO₃) – цирконататитаната свинца с толщинами слоев нанометрового диапазона представляют большой интерес как для фундаментальной физики, так и для различных технических применений [1–4]. Практический интерес связан с использованием цирконата-титаната свинца в микроэлектронике при создании, прежде всего, датчиков излучения, эмиссионных приборов, устройств акустоэлектроники и микромеханики, а также возможностями создания высокоэффективных конденсаторных структур для микросхем энергонезависимой памяти с низкими управляющими напряжениями (3-5 В), длительными временами хранения информации (не менее 5 лет), неизменностью параметров при большом числе циклов запись – считывание (> 10¹⁰-10¹² раз), высокими значениями радиационной стойкости и степени интеграции [3, 4]. Тем не менее, существует ряд нерешенных проблем, связанных с тем, что уменьшение размеров функциональных устройств современной электроники привело к ряду проблем, которые обусловлены не только технологическими ограничениями, но и тем, что начинают оказывать влияние физические явления, характерные для наномира. В частности, малый размер слоев в таких системах приводит к квантовым эффектам при транспорте носителей электрического заряда. Правильное использование данных эффектов позволит значительно увеличить функциональные характеристики микросхем на основе различных гетероструктур [4-8]. В связи с этим, актуальной проблемой является установление корреляций между условиями нанесения слоев гетероструктур и их

44

электротранспортными характеристиками. Исследования, направленные на установление более глубокого понимания физических механизмов переноса носителей заряда в многослойных наноструктурах, несомненно позволят более эффективно использовать их в различных приборах электронной техники.

Экспериментальная часть

Схема экспериментальной установки для нанесения слоев методами магнетронного и ионно-лучевого распыления приведена на рис. 1,*а*. Формирование конденсаторной структуры Si/SiO₂/Ti/Pt/PbZr_{1-x}Ti_xO₃/Pt (рис. 1,*б*) осуществлялось путем поэтапного ионно-плазменного нанесения слоев. Камера вакуумной установки была оборудована фланцевым двухлучевым ионным источником (ИИ) с замкнутым дрейфом электронов на основе ускорителя с анодным слоем и магнетронной распылительной системой (МРС). Особенностью ИИ является возможность генерирования двух независимых ионных пучков, один из которых служит для очистки поверхности подложек, а второй – для распыления материала мишени.

Для очистки поверхности подложек камера вакуумной установки откачивалась до остаточного давления 10^{-3} Па. В камеру подавался Ar до рабочего давления $2,0\times10^{-2}$ Па. Время очистки, энергия ионов и ток разряда во всех экспериментах были постоянными и составляли соответственно 3 мин, 700 эВ, 40 мА.

Для формирования нижнего электрода в виде двухслойной структуры Ti/Pt на оксидированных кремниевых пластинах Si (100) первоначально методом магнетронного распыления наносился слой Ti толщиной 50 нм при мощности – 1,2 кВт, напряжении – 470 В и токе разряда – 2,6 А. Затем методом ионно-лучевого распыления наносился слой Pt толщиной 80 нм при мощности, напряжении и токе разряда 0,19 кВт, 3,2 кВ и 60 мА, соответственно. Удельное электросопротивление нижнего и верхнего электродов не превышало 2×10^{-4} Ом×см. Для нанесения пленок PbZr_{1-x}Ti_xO₃ использовался ионно-лучевой метод. Использовались мишени состава PbZr_{0.54}Ti_{0.46}O₃ с размерами: диаметр *d*=80мм, толщина *h*=6мм. Распыление мишеней осуществлялось в среде Ar+O₂ при различных парциальных давлениях кислорода (pO₂), при мощности 150 и 300 Вт, напряжении 3,0 кВ, токе разряда 50 и 100 мА. Для компенсации поверхностного заряда, возникающего при распылении диэлектриков, включался накальный вольфрамовый компенсатор. Ток компенсатора составлял 15,0 А. Расход газов контролировался автоматическими регуляторами расхода газа PPГ-1. Время распылния мишени было 20±5 мин.

Толщина нанесенных пленок измерялась на различных участках пленок-свидетелей при помощи интерферометра МИИ-4 и корректировалась изменением времени нанесения слоев, как правило, в пределах от 15 до 20 мин. Изучение фазового состава пленок производилось на установке ДРОН-3 в Cuk_{α}-излучении. Структура поверхности слоев исследовалась с использованием атомного силового микроскопа NT-206. Измерение температурных зависимостей электропроводности слоев гетероструктуры осуществлялось на полупроводниковом измерительном комплексе HP4145.

Результаты и обсуждение

При формировании конденсаторной структуры с использованием гетероструктуры Si/SiO₂/Ti/Pt/ PbZr_{1-x}Ti_xO₃ /Pt следует учитывать особенности формирования текстуры [8–9] в слое PbZr_{1-x}Ti_xO₃ с кристаллографической ориентацией (100), обусловленной ориентацией кремниевой подложки. Для направленного роста зерен в слое PbZr_{1-x}Ti_xO₃ создавались центры кристаллизации, в качестве которых использовались зерна оксида титана (TiO), вкрапленные в слой текстурированной платины Pt (100). На основании оптимизации условий формирования нижнего электрода установлено, что напыление слоев Ti/Pt на подложку Si/SiO₂ с последующим отжигом при 670-870 К в течение 30 мин при pO₂=10⁵ Па способствует формированию ориентированного роста зерен Рt, рис. 2. Высота игл достигает 15 нм при температуре отжига 770 К и увеличивается при повышении температуры. Повышение температуры более 770 К нежелательно, так как высота игл может превысить критический размер и конденсаторная структура будет короткозамкнутой. Отжиг нижнего электрода Ti/Pt, напыленного на подложку Si/SiO₂ в окислительной среде, способствует взаимной диффузии Pt и Ti с одновременным окислением титана, что приводит к кластерообразованию фазы TiO на поверхности платиновой пленки. Вкрапления фазы ТіО являются центрами зародышеобразования, понижающими температуру формирования зерен $PbZr_{1,x}Ti_xO_3$ и способствующими направленному росту слоя [9, 10].

При изучении температурных зависимостей проводимости многослойной структуры Si/SiO₂/Ti/Pt/ PbZr_{1-x}Ti_xO₃ /Pt, отожженной в среде Ar при 770К в течение 0,5 ч, выявлен полупроводниковый характер электропереноса в PbZr_{1-x}Ti_xO₃ слое. Изучение электротранспортных характеристик слоя PbZr_{1-x}Ti_xO₃ проводилось в интервале рабочих температур 200–400 К. Для выявления доминирующего механизма электропереноса заряда были построены зависимости R=f(T) в координатах, $\ln(\sigma_0/\sigma) \propto T^{-1/2}$ и $\ln(\sigma_0/\sigma) \propto T^{-1/4}$, где σ_0 / σ – нормированная электрическая проводимость, σ_0 – электропроводность при $T_0 = 400$ К. При анализе температурной зависимости нормированной электропроводности в интервале 280–400 К установлено, что она является линейной функцией обратной температуры и хорошо описывается степенным законом $\ln(\sigma_0/\sigma) \propto T^{-1/2}$ (рис. 3,*a*).

Данная степенная зависимость указывает на реализацию переноса заряда путем туннелирования электронов из одного энергетического состояния в другое через энергетический барьер. В рамках этой модели туннельная проводимость определяется параметрами энергетического барьера и может быть выражена в виде

(1)

$$\sigma \propto \exp(-2\left\{\frac{2\pi}{h}\right\}\left[\frac{2m\phi}{s}\right]^{1/2}s),$$

где h – постоянная Планка, m – эффективная масса электрона, ϕ – эффективная высота барьера, s – ширина барьера, равная наименьшему расстоянию, через которое проходит электрон [10]. В этом случае имеет место нарушение электронейтральности, и электрону при туннелировании дополнительно необходимо преодолеть энергетический барьер, обусловленный кулоновским взаимодействием (E_k). Это означает, что в процессе туннелирования могут участвовать лишь термически активированные электроны с энергиями выше кулоновского энергетического барьера.

Учитывая соотношение $E_a \ge E_k$, где E_a – энергия активации туннелирования электронов, E_k -величина кулоновского энергетического барьера, аналитическое выражение для проводимости записывается в виде:

$$\sigma = \sigma_0 \{ \exp(-2\sqrt{[E_a/kT]}) \}, \tag{2}$$

где $E_a = \{2\pi/h\}(2m\phi)^{1/2}sE_k, k$ -постоянная Больцмана. (3)

Из выражения (2) вытекает степенной закон поведения нормированной электропроводности от обратной температуры в виде:

$$\ln(\sigma_0/\sigma) = 2\sqrt{[E_a/k]} T^{-1/2}, \text{ r.e. } \ln(\sigma_0/\sigma) \sim T^{-1/2}.$$
(4)

Рис. 2. АСМ-изображение поверхности последнего слоя электрода (Ti/Pt) до (*a*) и (δ) после отжига при *T*=770 К и рО₂=10⁵ Па в течение 0,5 ч

При дальнейшем понижении температуры от 280 К до 200 К механизм электропроводности изменяется с туннельной проводимости на прыжковую проводимость и прыжковую проводимость можно в хорошем приближении описать степенным законом $\ln(\sigma_0/\sigma) \propto T^{-1/4}$ (закон Мотта) [11]. В рамках данной модели предполагается, что вблизи краев зоны проводимости и валентной зоны электронные состояния локализованы и представляют собой «ловушки» для электронов.

Движение электронов при прыжковой проводимости из одного состояния в другое происходит с испусканием или поглощением фотона. При этом, электрон совершает прыжки ближайшими состояниями, так как величина, определяющая перекрытие волновых функций $\exp(-2\alpha r)$, где r – расстояние прыжка, α – радиус локализации волновой функции электрона, быстро спадает с расстоянием. Электрон, как правило, перепрыгивает в такое состояние, для которого E_{min} является наименьшей возможной величиной, что характерно для прыжковой проводимости с переменной длиной прыжка, причем длина прыжка r увеличивается с уменьшением температуры. Для такого состояния E_{\min} определяется как $E_{\min} = 3 \{4\pi r^3 N(E_F)\}^{-1}$, где $N(E_F)$ – плотность состояний на уровне Ферми. Так как среднее расстояние для прыжка < r >= 3r/4, где $r = \{2/3[2\pi\alpha N(E_F)kT]\}^{-1/4},$ вероятность определяется а прыжка выражением: $9\exp(-1.66(\alpha^3/kN(E_F)T)^{-1/4})$, где 9 – множитель, зависящий от спектра фотонов, то выражение для проводимости принимает вид:

$$\sigma = e^2 N(E_F) < r >^2 9 \exp(-1,66 \left(\alpha^3 / k N(E_F) T \right)^{-1/4})$$
(5)

и $\ln c \sim T^{-1/4}$. На основании вышеописанной модели можно утверждать, что в интервале температур 200–280 К в слое PbZr_{1-x}Ti_xO₃ доминирует перенос заряда путем прыжковой проводимости электронов с переменной длиной прыжка по локализованным состояниям, лежащими в узкой полосе энергий вблизи уровня Ферми. Перенос заряда осуществляется по каналу, пронизывающему всю среду и образованному сферами радиуса *r*, окружающими каждый узел решетки и соприкасающимися вдоль наиболее благоприятного пути для переноса заряда [11].

Рис. 3. Зависимости нормированной электропроводности конденсаторных структур от обратной температуры: *а*– структура, отожженная при 770 К в течение 0,5 ч в среде Ar, измерения в интервале температур 280–400 К; *б*– структура, отожженная при 770 К в течение 0,5 ч в окислительной среде, измерения в интервале температур 280–400 К; *б*– структура, отожженная при 770 К в течение 0,5 ч в окислительной среде, измерения в интервале температур 280–400 К; *б*– структура, отожженная при 770 К в течение 0,5 ч в окислительной среде, измерения в интервале температур 280–400 К; *б*– структура, отожженная при 770 К в течение 0,5 ч в окислительной среде, измерения в интервале температур 280–400 К; *б*– структура, отожженная при 770 К в течение 0,5 ч в окислительной среде, измерения в интервале температур 280–400 К

При рассмотрении политермических зависимостей в диапазоне (200-400 К) нормироэлектрической проводимости σ_0 / σ конденсаторной ванной структуры Si/SiO₂/Ti/Pt/PbZr_{1-x}Ti_xO₃/Pt, отожженной при T = 720 К и pO₂= (0,21 и 2,0)×10⁵ Па в течение 0,5 ч, установлено, что увеличение давления кислорода при отжиге конденсаторной структуры приводит к значительному росту σ_0 / σ (рис. 3,6). При этом для обоих случаев р O_2 = (0,21 и 2,0)×10⁵ Па зависимости $\sigma_0/\sigma = f(T)$ являются линейными функциями обратной температуры и хорошо описываются степенным законом $\ln(\sigma_0/\sigma) \propto T^{-1/4}$. Данное выражение, описываемое законом Мотта $\ln(\sigma/\sigma_0) \sim (1/T)^{1/4}$, является критерием реализации механизма переноса заряда путем прыжков с переменной длиной по локализованным состояниям вблизи уровня Ферми. Перенос заряда путем прыжков не всегда имеет различную длину прыжка r. Так при отжиге гетероструктуры в окислительной среде (р $O_2=2,0\times10^5$ Па) величина $\alpha r >>1$, и прыжковый механизм переноса заряда осуществляется только между ближайшими соседями [11–12].

Эта зависимость может реализоваться, когда состояния локализованы по всей зоне, так что край зоны проводимости лежит в более высоких энергетических уровнях [13–15]. Уменьшение давления кислорода при отжиге конденсаторной структуры до $PO_2=0,21\times10^5$ Па приводит к реализации условия – $\alpha r \leq 1$. В этом случае перенос заряда осуществляется с изменяющейся длиной прыжка, причем длина прыжка увеличивается с уменьшением температуры.

Заключение

На основании исследований установлено, что нанесение нижнего электрода, состоящего из двух слоев Ti/Pt, с последующим их отжигом при 670–870 К в течение 30 мин приводит к ориентированному росту зерен Pt в направлении, перпендикулярном поверхности титана.

При рассмотрении влияния термической обработки на электротранспортные свойства слоя $PbZr_{1-x}Ti_xO_3$ в мультислойной структуре $Si/SiO_2/Ti/Pt/PbZr_{1-x}Ti_xO_3/Pt$, установлены различные механизмы переноса заряда. Так, при отжиге T=770 К в инертной среде Ar в течение 0,5 ч, механизмом электропереноса в слое $PbZr_{1-x}Ti_xO_3$ в интервале температур 280–400 К является туннелирование термически активированных электронов с энергиями выше кулоновского энергетического барьера. В интервале температур 200–280 К доминирует перенос заряда путем прыжковой проводимости электронов с переменной длиной прыжка по локализованным состояниям, лежащими в узкой полосе энергий вблизи уровня Ферми. При рассмотрении влияния термической обработки при температуре 720 К и давлениях кислорода $pO_2 = (0,21 \text{ и } 2,0) \times 10^5$ Па в течение 0,5 ч на электротранспортные свойства слоя PbZr_{1-x}Ti_xO₃ установлено, что в интервале температур 200–400 К перенос заряда осуществляется с изменяющейся длиной прыжка. При

этом длина прыжка увеличивается с уменьшением температуры. Перенос заряда путем прыжков не всегда имеет различную длину прыжка *r*. Так при отжиге гетероструктуры в окислительной среде ($pO_2=2,0\times10^5 \Pi a$) величина $\alpha r >>1$, и прыжковый механизм переноса заряда осуществляется только между ближайшими соседями.

THE INFLUENCE OF SYNTHESIS CONDITIONS ON ELECTRICAL TRANSPORT PROPERTIES OF LEAD ZIRCONIUM TITANATE FERROELECTRIC FILMS

L.I. GURSKII, N.A. KALANDA, S.E. DEMYANOV, D.A. GOLOSOV, S.E. ZAVADSKY, A.V. PE TROV, E.V. TELESH, L.V. KOVALEV

Abstract

Various mechanisms of charge transfer are determined at a consideration of the influence of postgrowth annealing processes on electrical transport processes of a $PbZr_{1-x}Ti_xO_3$ layer in $Si/SiO_2/Ti/Pt/PbZr_{1-x}Ti_xO_3/Pt$ multilayered structure. In this way at the structure annealing at 770 K in an inert medium of Ar during 0,5 h, a tunneling of thermally active electrons with energies higher than Coulon energy barrier is the main electrical transport mechanism in the $PbZr_{1-x}Ti_xO_3$ layer in the temperature range 280–400 K. In the temperature range 200–280 K dominates the charge transfer mechanism of electrons hopping with a variable length of the hopping over localized states, located in a narrow enegy strip near the Fermi level. As a result of a consideration of the influence of postgrowth annealing processes at 720 K and $pO_2 = (0,21 \text{ and } 2,0) \times 10^5$ Pa during 0,5 h on electrical transport in the PbZr_{1-x}Ti_xO₃ layer it was determined that the charge transfer process in the temperature range 200–400 K is realized with the changeable hopping length.

Литература

1. Whatmore R.W. // Ferroelectrics. 1999. Vol. 225. P. 179.

- 2. Muralt P. // J.Microeng. 2000. Vol. 10. P. 136.
- 3. Setter N., Damjanovic D., Eng L. et al. // J. Appl. Phys. 2006. Vol. 100. P. 051606.

4. Suchaneck G., Gerlach G. // Ferroelectrics. 2006. Vol. 335. P. 701.

- 5. Ledermann N., Muralt P., Babowski J. et al. // Sensors and Actuators. 2003. Vol. A105. P. 162.
- 6. Bi Zh., Zhang Zh., Fan P. // J. Phys.: Conf. Ser. 2007. Vol. 61. P. 115.
- 7. Петров А.В., Гурский Л.И., Каланда Н.А. и др. // Докл. БГУИР. 2010. №3. С. 62–67.
- 8. Hsu Y.-Ch., Wu Ch.-Ch., Lee Ch.-Ch. et al. // Sensors and Actuators. 2004. Vol. A116. P.369.
- 9. Suchaneck G., Lin W.-M., Gerlach G. et al. // Integrated Ferroelectrics. 2006. Vol. 80. P. 189.
- 10. Афанасьев В.П., Мосина Г.Н., Петров А.А. и др. // Письма в ЖТФ. 2001. Т. 27, №11. С. 56-63.
- 11. Зи С. Физика полупроводниковых приборов. М., 1984.
- 12. Park H.-H., Yoon S., Park H.-H., et al. // Thin Solid Films. 2004. Vol. 447-448. P. 669.
- 13. Kundu T.K., Lee J.Y.-M. // Ferroelectrics. 2005. Vol. 328. P. 53.
- 14. Balke N., Bdikin I., Kalinin S.V. et al. // J. Am. Ceram. Soc. 2009. Vol. 92. P. 1629.
- 15. Wang W., Fukui M., Fuji T. et al. // J. Korean Phys. Soc. 1999. Vol. 35. P. S1532.