РАСЧЕТ МНОГОСЛОЙНЫХ ОСЕСИММЕТРИЧНЫХ ОБОЛОЧЕК МЕТЕДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

К.С. Курочка, И.Л. Стефановский

Кафедра «Информационные технологии», Гомельский государственный технический университет им. П.О. Сухого Гомель, Республика Беларусь E-mail: kurochka@gstu.by, igorst@pisem.net

Ихложено положение методов конечных элементов к расчету тонкой двухслойной конической оболочки под действием равномерно-распределенной нагрузки с использованием осесимметричного конечного элемента. Расхождение результатов исследования предлагаемой математической модели и имеющихся результатов расчетов по аналитическким формулам для тонких двухслойных конических оболочек не превышает 9,3 %.

Введение

В настоящее время все большее применение находят многослойные элементы конструкций. Рассмотрим изгиб тонкой двухслойной конической оболочки под действием осесимметричной нагрузки.

I. Конечно-элементная модель

Решение данной задачи будем искать методом конечных элементов. В качестве системы координат выберем цилиндрическую, для которой коэффициент Ламе [1] $H_1 = 1, H_2 = r$; радиусом кривизны $R_1 = \infty, R_2 = r/cos\theta.$

Однослойный элемент оболочки в цилиндрической системе координат, с координатными линиями s и φ представлен на рис. 1.

Рис. 1 – Глобальные и локальные координаты осесимметричного элемента конической оболочки.

Согласно теории Кирхгофа-Лява [2] компоненты мембранных и изгибных деформаций:

$$\varepsilon_{11} = \varepsilon_s = \frac{\partial u}{\partial s}, \\ \varepsilon_{22} = \varepsilon_{\varphi} = \frac{u \sin \theta + w \cos \theta}{r},$$
$$\kappa_{11} = \kappa_s = -\frac{\partial^2 w}{\partial s^2}, \\ \kappa_{22} = \kappa_{\varphi} = -\frac{\sin \theta}{r} \frac{\partial w}{\partial s},$$
$$\gamma_{12} = 0, \\ \kappa_{12} = 0,$$

координатных линий s и φ ; κ_s , κ_{φ} – изменение тензоров деформаций и напряжений.

кривизны в направлении координатных линий s и $\varphi; \gamma_{12}$ – деформация сдвига; κ_{12} – деформация скручивания.

Компоненты перемещений:

$$w=w\left(s\right);u=u\left(s\right);v=0;\beta_{s}=-\frac{\partial w(s)}{\partial s};$$

где w – радиальное смещение, и – осевое смещение, βs – угол поворота вокруг оси, перпендикулярной меридиональной кривой.

В качестве искомой величины рассмотрим прогиб конической оболочки w = w(s), для моделирования которого воспользуемся осесимметричными конечными элементами с двумя узлами по три степени свободы в каждом $\{\mathbf{g}_0\}^T = \{\mathbf{u} \in \beta\}$, где $\{\mathbf{g}_0\}$ – вектор узловых степеней свободы конечного элемента; β – угол поворота в радиальном направлении (рис. 1).

Для тонкой конической оболочки будут отсутствовать сдвиговые деформации, т.е. векторы деформаций и напряжений будут содержать только по четыре компоненты [3].

Воспользуемся принципом возможных перемещений [4], которы в случае двухслойной конической оболочки перепишем в виде (1), где цифра в индексе означает номер слоя оболочки, 0 соответствует внутреннему слою,

 $\{g\}^{T} = \{ u_{i} \quad w_{i} \quad \beta_{i} \quad u_{i+1} \quad w_{i+1} \quad \beta_{i+1} \}$ - вектор перемещений; вектор усилий (2); $\{\varepsilon\}^{T} = \{ \varepsilon_{s} \quad \varepsilon_{\varphi} \quad \kappa_{s} \quad \kappa_{\varphi} \}$ - вектор де-

формаций; $\{\sigma\}^T = \{ \sigma_s \ \sigma_{\varphi} \ \chi_s \ \chi_{\varphi} \}$ – вектор напряжений;

s_i – координата i-го узла; черта над переменной означает вариацию признака.

Для аппроксимации перемещенийвоспользуемся следующими функциями формы:

$$u(s) = a_1 + a_2 s; w(s) = a_3 + a_4 s + a_5 s^2 + a_6 s^3.$$

Модель армированного слоя аналогична [5].

После выполнения необходимых преобразований несложно вычислить $\{R\} = [k] \{g\}$, где κ – матрица жесткости (3). После определения пегде $\varepsilon_s \ \varepsilon_{\varphi}$ – линейные деформации в направлении ремещений, возможно вычисление компонентов

II. Результаты

Рассмотрим напряженно-деформированное состояние двухслойной жестко защемленной конической оболочки, нулевой (внутренний) слой которой армирован волокнами постоянного сечения в миридианальном направлении, первый в окружном. Примем угол полураствора конуса $\alpha = 30^{\circ}, h1 - h0 = h2 - h1 = 0, 5h, b/h = 20, a/b = 0, 2, \nu_c = \nu_a = 0, 3, E_0^c = E_1^c = E_c, E_0^a = E_1^a = E_a, \nu_1^a = \nu_0^a = \nu_a, \nu_1^c = \nu_0^c = \nu_c,$ где E_k^c, E_k^a – Соответственно модуль Юнга связующего и армирующих элементов k-слоя.

Интенсивность армирования нулевого слоя является переменной: $\omega = \omega_a a/b$, где ω_a - значение рассматриваемой интенсивности в сечении s = a оболочки (0 < a $\leq s \leq b$).

Интенсивности армирования слоев:

$$\omega_{z0} = \omega_{z1} = \omega_1 = 0, 5; \omega_0 \mid_{x=a/b} = 0, 9$$

Конус дискретизировался десятью и тридцатью осесимметричными конечными элементами.

Решение с помощью предложенного алгоритма сравнивалось с решением из [5]. матрица жесткости вычислялась по формуле (3). Максимальная погрешность решений не превышала 9,3 % при количестве элементов 10 и 5,4 % при количестве конечных элементов равном 30.

 $\{R$

Заключение

Согласно результатам проведенного моделирования предлагаемая математическая модель и численный алглритм ее реализации могут быть использованы для исследования напряженнодеформированного состояния конических оболочек.

Достоинством предлагаемой математической модели и методики ее применения является использование осесимметричных конечных элементов, позволяющих для дискретизации исследуемой оболочки применять меньшее число узлов, чем при использовании элементов других типо.

- Голованов, А. И. Введение в метод конечных элементов статики тонких оболочек / А. И. Голованов, М. С. Корнишин. – Казань, 1990. – 269.
- Chapelle, D. The Finite Element Analysis of Shells Fundamentals / D. Chapelle, K–J Bathe. – Berlin.: Springer, 2009. – 426 p.
- Gallagher, R. H. Finite element representations for thin shell instability analysis //Bucking of Structures, Cambridge.: 1974. – 51 p.
- Занкевич, О. Метод конечных элементов в технике М.: Мир, 1975. – 541 с.
- Андреев, А. Н. Многослойные анизотропные оболочки и пластины: изгиб, устойчивость, колебания / А. Н. Андреев, Ю. В. Немировский. – Новосибирск: Наука, 2001. – 288 с.

$$\left\{\bar{g}\right\}^{T}\left\{R\right\} = \int_{s_{i}}^{s_{i+1}} \int_{0}^{2\pi} \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \left\{\bar{\varepsilon^{0}}\right\}^{T} \left\{\sigma^{0}\right\} dz d\varphi ds + \int_{s_{i}}^{s_{i+1}} \int_{0}^{2\pi} \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2} + h_{1}} \left\{\bar{\varepsilon^{1}}\right\}^{T} \left\{\sigma^{1}\right\} dz d\varphi ds \qquad (1)$$

$$\}^{T} = \left\{ \begin{array}{ccc} R_{si} & R_{\varphi i} & M_{\beta i} & R_{si+1} & R_{\varphi i+1} & M_{\beta i+1} \end{array} \right\}$$
(2)

$$[k] = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \int_{0}^{2\pi} \int_{s_i}^{s_{s+1}} \left(\varepsilon_s^0 \sigma_s^0 + \varepsilon_\varphi^0 \sigma_\varphi^0 + \kappa_s^0 \chi_s^0 + \kappa_\varphi^0 \chi_\varphi^0 \right) dz ds d\varphi + \\ + \int_{\frac{h_0}{2}}^{\frac{h_0}{2} + h_1} \int_{0}^{2\pi} \int_{s_i}^{s_{s+1}} \left(\varepsilon_s^1 \sigma_s^1 + \varepsilon_\varphi^1 \sigma_\varphi^1 + \kappa_s^1 \chi_s^1 + \kappa_\varphi^1 \chi_\varphi^1 \right) dz ds d\varphi$$
(3)

Таблица 1 – Максимальные значения модулей безразмерного прогиба двухслойной жестко защемленной конической оболочки

КОНИЧЕСКОЙ ОООЛОЧКИ								
E_a/E_c	1	5	10	15	20	30	40	50
w, 10^{-2} , точное [5]	0,718	0,480	0,359	0,289	0,245	0,186	0,153	0,129
w, 10^{-2} , MK Θ ,	0,707	0,474	0,352	0,281	0,235	0, 176	0,141	0,117
10 элементов								
Погрешность %	1,53	1,25	1,94	2,76	4,08	5,37	7,84	9,3
w, 10^{-2} , MK \Im ,	0,708	0,475	0,352	0,282	0,237	0,180	0,146	0,122
30 элементов								
Погрешность, %	1,4	1,0	1,9	2,4	3,3	3,2	4,6	5,4