2012 № 7(69)

КРАТКИЕ СООБЩЕНИЯ

УДК 614.843

ГИДРАВЛИЧЕСКИЕ ИСПЫТАНИЯ СПРИНКЛЕРНО-ДРЕНЧЕРНЫХ СИГНАЛЬНЫХ КЛАПАНОВ

Е.А. ГЕРАСИМОВИЧ, К.Д. ЯШИН

Белорусский государственный университет информатики и радиоэлектроники П.Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 22 декабря 2011

Проведены комплексные стендовые гидравлические испытания сигнального спринклернодренчерного клапана. Описана методика проведения испытаний. Определено время вскрытия клапана рабочим давлением 0,12 МПа и 1,2 МПа. Проверена герметичность и прочность корпуса клапана при давлении внутри клапана 2,4 МПа и вынесено решение о его работоспособности и соответствии нормам пожарной безопасности.

Ключевые слова: клапан сигнальный спринклерно-дренчерный, гидравлические испытания, рабочее давление, работоспособность.

Введение

Проведение гидравлических комплексных испытаний клапанов позволяет вынести решение о их работоспособности, выявить критерии работы и диапазон применения, а также оценить соответствие нормам. Испытания проводят на прочность, герметичность, на работоспособность и скорость срабатывания в диапазоне рабочих давлений, на надежность: с определенным циклом срабатывания и на стойкость к гидроударам и ложным срабатываниям.

Теоретический анализ

Испытания спринклерно-дренчерных клапанов [1, 2] проводят на комплексном стенде, предназначенном для гидравлических, пневматических и электрических испытаний сигнальных клапанов на соответствие своим техническим условиям [2] и техническим условиям в составе узлов управления [3]. Принципы реализации испытаний состоят в создании гидросхемы стенда, идентичной утвержденной монтажной схеме обвязки узла управления, и в способности моделирования экстремальных ситуаций ложных срабатываний и гидроударов для определения мер по их недопущению в реальных условиях функционирования.

Для регистрации, наблюдения и управления испытаниями на стенде предусмотрена измерительная и управляющая аппаратура. Для регулирования подачи и давления воды на стенде, в рабочих камерах, питающих и подводящих полостях, установлена запорная арматура с ручным управлением и вентили с электроприводом. Для проверки нового вида автоматического пожаротушения — спринклерно-дренчерного — к питающему отверстию сигнального клапана подключается электромагнитный клапан. Критериями положительной оценки испытаний являются открытие и закрытие запорного органа сигнального клапана, и последующее срабатывание контактной группы сигнализатора давления [4—6].

Методика проведения испытаний клапана

На рис. 1 и 2 представлены электрическая схема управления клапаном для проверки спринклерного и дренчерного режима работы клапана и схема обвязки клапана соответственно.

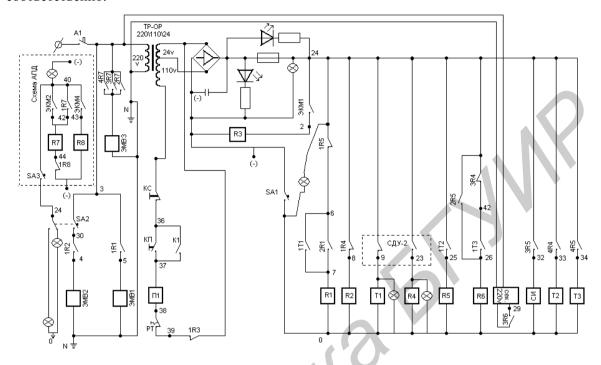


Рис. 1. Электрическая схема управления клапаном

Испытание на работоспособность и скорость срабатывания клапана в диапазоне рабочих давлений (спринклерный и дренчерный режимы). Для проверки спринклерного режима на работоспособность SA2 размыкается (горит лампочка «спринклер») и включается SA1. Далее мы подаем питание в автоматическую схему, запускаем таймер T1 – выдержка под давлением. Через заданное время таймер T1 замыкает нормально разомкнутые контакты 1T1 и включает R1. В результате этих действий нормально разомкнутые 2R1 контакты самоблокируются и R1 включает ЭМВ1, через нормально разомкнутый 1R1 контакт. Происходит открытие клапана и обратный отсчет времени секундомера, в течение этого периода времени вода из отверстий клапана вытекает через вентили в дренаж. Время открытия клапана контролируется визуально по электронному секундомеру «сек». После открытия клапана (появляется течь из вентиля) контакты сигнализатора давления размыкают T1. Сигнализатор в свою очередь размыкает 2T1, в результате чего сбрасывается секундомер. При срабатывании сигнализатора давления так же замыкается вторая пара нормально открытых контактов и включается R4. Нормально открытый контакт 4R4 включает T2 и отсчитывает время в открытом состоянии (заданное). После отсчета времени контакт T2 остается в открытом состоянии, а контакт 1T2 включает R5 и происходит разрыв нормально замкнутого контакта 1R5, в результате отключается R1. Секундомер включается и фиксируется время закрытия клапана. Контакт 4R5 включает таймер T3, который контролирует время закрытия клапана. Как только клапан закрывается, контакт сигнализатора давления размыкается и сбрасывает все таймеры, далее происходит включение Т1 и цикл повторяется. Если клапан не закрылся или не открылся за заданное время, то схема остановится, а секундомер будет продолжать отсчет до выполнения задачи (открытия или закрытия клапана).

Для дренчерного режима мы дополнительно включаем SA2.

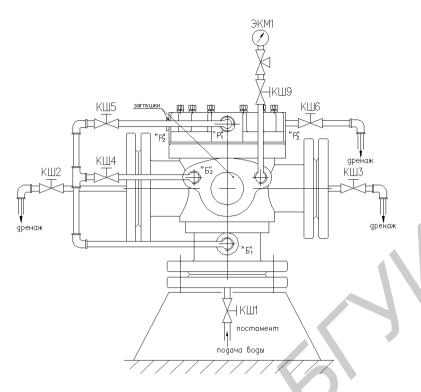


Рис.2. Схема обвязки клапана

Испытание на герметичность и прочность. В ходе испытаний проверялись герметичность соединений и прочность корпуса клапана, а также герметичность затвора при давлении 2,4 МПа. Давление при испытании повышалось ступенями: 0,12 МПа; 1,2 МПа; 2,4МПа. На каждой ступени выдерживали заданное давление в течение 5 мин. В самом начале испытания проверялись все краны в обвязке клапана, необходимо чтобы они были закрыты. Открывались краны КШ1-КШ6 и КШ8. Через краны КШ2, КШ3, КШ6 и КШ8 начинает вытекать вода без пузырьков воздуха. При выполнении этого условия закрываются краны КШ2, КШ3 и КШ6 – произоисходит самозакрывание клапана и из крана КШ8 прекращается течь воды. Кран КШ8 остается открытым, на манометре ЭКМ1 отражается установленное программой давление каждой ступени. Скорость нарастания давления не более 0,2 МПа в 1 с [6]. Производим осмотр клапана. Клапан признается годным, если не появились трещины, поры, подтекания в уплотнениях, болтах, шпильках, также из крана КШ8 не допускается капельная течь воды — более 1 капли за 4 с.

Для проведения испытаний и регистрации наблюдений были использованы измерительные средства: динамометр ДПУ-0,2-2, манометр образцовый ОБМ1-160, манометр электромагнитный ЭКМ-1У, секундомер СДС, линейка измерительная металлическая, штангельциркули ШЦ 0-125мм и ШЦ 0-250мм, весы МК-15.3-РП-100. Испытания проводились на стенде комплексном СТ-КСД-2М при температуре окружающей среды 17-18°С и относительной влажности 75% [7–9].

Результаты испытаний

Следуя методике и программе испытаний, в соответствии с техническими условиями [2, 3] были проведены испытания опытного образца спринклерно-дренчерного клапана двойного действия. В ходе испытаний было установлено, что клапан срабатывает в диапазоне давлений 0,12МПа — 1,5МПа, минимальное и максимальное давление соответственно 0,12МПа и 1,5 МПа. Было установлено, что закрытие и открытие клапана происходит автоматически (спринклерный режим). Диапазон сработки в соответствии с нормами [5] составляет 0,14 МПа...1,2 МПа. Исходя из полученных результатов сделано заключение о

соответствии нормированным показателям. Клапан сохраняет свою работоспособность при температурах от 0 до +50°C, что также соответствует заявленным параметрам и значит, что клапан устойчив к климатическим воздействиям. По результатам испытаний установлено, что усилие приведения клапана в действие составляет 95H и не превышает нормированного показателя равного 100H. Было проведено 500 циклов срабатывания клапана при максимальных рабочих давлениях, согласно [4–6], и после всех циклов сработки клапан сохранил работоспособное состояние, что также свидетельствует о положительном результате. Однако в ходе испытаний выявлено, что время срабатывания клапана составляет 2 с, что является критическим максимальным нормативным значением и следует вывод о конструктивной доработке и совершенствования конструкции клапана.

Результаты испытаний и оценка работоспособности клапана представлены в таблице.

Результаты испытаний и оценка работоспособности клапана

Вид испытаний	Нормированное значение показателей	Фактическое значение показателей	Оценка соответствия
Срабатывание в диа- пазоне рабочих давле- ний	$P_{\min} \leq 0,14 \ \mathrm{M}\Pi \mathrm{a}$ $P_{\max} \geq 1,2 \ \mathrm{M}\Pi \mathrm{a}$	P_{\min} =0,12 МПа P_{\max} =1,5 МПа	соответствует
Устойчивость к кли- матическим воздей- ствиям	Эксплуатация при температуре +4+50°С и относительной влажности (95±3)%	0+50°C (95±3)%	соответствует
Работоспособность ручного управления	Закрытие и открытие затвора кла- пана: спринклерный режим – автоматическое, дренчерный режим – ручное	Клапан обеспечивает автомати- ческое, ручное закрытие и от- крытие затвора в соотетствую- щих режимах	соответствует
Усилие приведения в действие клапана	100H	95H	соответствует
Время срабатывания клапана	$t_{\mathrm{cpmax}} \leq 2\mathrm{c}$	$t_{ m cpmax} = 2c$	соответствует
Герметичность	Герметичность при давлении 1,8 МПа для рабочих полостей и 2,4 МПа для затвора	Клапан герметичен, течь отсут- ствует при указанных давлениях	соответствует
Чувствительность (давление срабатывания клапана)	$P \le 0,14$ МПа Расход воды через клапан $\ge 0,45$ л/с	<i>P</i> cp = 0,12 МПа Расход воды 0,47л/с	соответствует
Работоспособность (число циклов срабатывания)	Клапан должен сохранять работо- способность после 500 циклов срабатывания при максимальных рабочих давлениях	После 500 циклов сработки клапан работоспособен и расход огнетушащего вещества в норме (135л/с)	соответствует

Заключение

В работе проведены испытания спринклерно-дренчерных клапанов на комплексном стенде СТ-КСД-2М, предназначенном для гидравлических, пневматических и электрических испытаний клапанов сигнальных. Анализируя полученные при электрических испытаниях результаты установлено, что клапан обеспечивает автоматическое открытие и закрытие клапана при работе в спринклерном режиме и ручное – в дренчерном.

На основании проведенных исследований установлена взаимосвязь работоспособности клапана и расхода огнетушащего вещества. Определены закономерности сработки клапана и расхода огнетушащего вещества при максимальных рабочих давлениях. После 500 циклов срабатывания клапан сохранил работоспособное состояние и расход огнетушащего вещества также остался в пределах нормы.

Оценка результата исследований позволяет судить о работоспособности клапана, герметичности и устойчивости к климатическим воздействиям.

HYDRAULIC TEST SPRINKLER-EQUIPPED SIGNAL DELUGE VALVES

A.A. HERASIMOVICH, K.D. YASHIN

Abstract

The complex bench hydraulic tests signal sprinkler, deluge valve are conducted. The technique of carrying out of tests is described. Checked tightness and durability of the valve body at a pressure of 2,4 MPa inside the valve. A decision on its performance and compliance with the standards of fire safety is issued.

Список литературы

- 1. Патент РБ № 4980, МПК А 62С 37/00. Клапан сигнальный (варианты) / Р.А. Чубаров.
- 2. ТУ ВҮ 190589576.001-2009. Клапаны сигнальные спринклерно-дренчерные (Варианты). Технические условия.
- 3. ТУ ВУ 190589576.002-2010. Узлы управления установок водяного и пенного пожаротушения автоматические (Варианты). Технические условия.
- 4. ГОСТ 15150-69. Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.
- 5. НПБ 41-2001. Нормы пожарной безопасности Республики Беларусь. Установки водяного и пенного пожаротушения. Автоматические узлы управления. Общие технические требования. Методы испытаний.
- 6. НПБ 54-2002. Нормы пожарной безопасности Республики Беларусь. Клапаны пожарных кранов. Общие технические требования. Методы испытаний.
- 7. ТКП 45-2.02-190-2010. Пожарная автоматика зданий и сооружений. Строительные нормы проектирования.
- 8. Иванов Е.Н. Автоматическая пожарная защита. М., 1980.
- 9. РД 25.953-90. Системы автоматического пожаротушения, пожарной, охранной и охранно-пожарной сигнализации. Обозначения условные графические элементов систем.