ПОВЫШЕНИЕ ТОЧНОСТИ ФОРМИРОВАНИЯ ШАГОВЫХ ТРАЕКТОРИЙ ПРИ ПОМОЩИ КОМБИНИРОВАННЫХ ШАГОВ

Д. Г. Бегун

Кафедра высшей математики, Белорусский государственный университет информатики и радиоэлектроники

Минск, Республика Беларусь E-mail: begun.dx@gmail.com

Рассматривается метод формирования шаговых траекторий на базе оценочной функции использующий комбинированные шаги по двум координатам одновременно. Проводится анализ возможных вариантов пересечения функцией элементарных квадратов дискретной сетки и выбор направлений элементарных шагов приращения по осям координат. На основании результатов проведенного анализа описывается общий процесс формирования шаговых траектории с использованием комбинированных шагов. Получены общие формулы вычисления оценочных функций для кривых второго порядка, на базе которых можно реализовать алгоритм формирования шаговых траекторий.

Введение

В системах многокоординатных перемещений оборудования микроэлектроники широкое применение нашел метод формирования шаговых траекторий на базе оценочной функции. На его основе построены различные алгоритмы формирования отрезков, дуг окружностей и участков парабол и других кривых. Основной задачей таких алгоритмов является получение минимального отклонения формируемой траектории от заданной кривой F(x,y)=0. При этом каждый шаг совершается только по одной координате. Здесь рассматривается один из методов повышения точности формирования траектории, при котором может использоваться шаг одновременно по обеим координатам.

Метод формирования шаговых траекторий с комбинированным шагом

Согласно рассматриваемому методу, точность формируемой траектории повышается за счет выполнения элементарных комбинированных шагов приращения. В результате чего исполнительный орган выполняет элементарный шаг под углом 45 градусов. Эффективность такого метода формирования траекторий состоит в том, что он дает лучшее приближение рассчитываемой траектории к теоретической кривой, поскольку узловые точки, наиболее удаленные от линии F(x,y) = 0, исключаются при отработке шаговой траектории. Поэтому шаговая траектория сглаживается путем соединения элементарными отрезками прямых линий двух узловых точек, соседних с теми узловыми точками, которые наиболее удалены от линии F(x,y) = 0[1].

На рис. 1 представлены примеры возможных вариантов пересечения элементарных квадратов линиями F(x,y)=0 и указаны направления элементарных шагов приращения по одной или двум координатам одновременно. Анализ вариантов пересечения элементарных квадратов

линиями позволяет сделать следующий вывод: для выбора наиболее благоприятного направления элементарного шага достаточно определить знаки оценочной функции в точках, расположенных на середине двух сторон квадрата, не соприкасающихся с узловой точкой, из которой определяется направление элементарного шага.

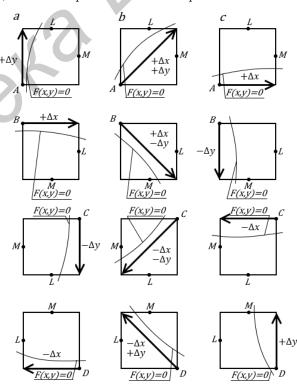


Рис. 1 — Пример выбора элементарных приращений в зависимости от вида пересечения отрезком линии F(x,y)=0 элементарного квадрата дискретной сетки

Рассмотрим пересечения элементарного квадрата линией F(x,y)=0 (см. Рис. 1). Будем считать, что точка определена или начальными данными, или как вторая узловая точка предыдущего, пересекаемого той же линией F(x,y)=0 соседнего квадрата. Определение направления

элементарного шага выполним в зависимости от значений знаков оценочной функции $F_{ij}^{e1}[2]$ в точке L с координатами $x_i+0,5,\ y_j+1$ и оценочной функции F_{ij}^{e2} в точке M с координатами $x_i+1,\ y_j+0,5.$ Знаки этих функций, согласно методу оценочной функции, характеризуют положение точек L и M по отношению к линии F(x,y)=0. Если значение оценочной функции F_{ij}^{e1} отрицательное, то точка L находится под или на линии F(x,y)=0. То же можно сказать и о точке M, положение которой по отношению к линии F(x,y)=0 определяется знаками оценочной функции $F_{ij}^{e2}.$

Процесс формирования шаговой траектории в области задания линии F(x,y)=0 состоит в последовательном определении двух узловых точек каждого пересекаемого ей элементарного квадрата, которые наиболее близко расположены к линии F(x,y)=0. При этом учитывается, что вторая узловая точка рассматриваемого (i,j)-го квадрата является в тоже время первой следующего (i+1,j)-го или (i,j+1)-го квадрата.

На практике большой интерес представляет формирование траекторий второго порядка, описываемых в непрерывной системе координат уравнением (1).

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0 (1)$$

Рассмотрим процесс построения разностных уравнений, применяемых при вычислении значений оценочной функции F_{ij}^{e1} , F_{ij}^{e2} для кривых второго порядка, представленных уравнением (1). В общем случае для определения значений оценочной функции можно использовать выражения (2) и (3).

$$\sum_{i=1}^{n} \delta X_i - \sum_{j=1}^{m} \Delta Y_j + F_{ijnach}^{e1} = F_{ij}^{e1}$$
 (2)

$$\sum_{i=1}^{n} \Delta X_i - \sum_{j=1}^{m} \delta Y_j + F_{ijnach}^{e2} = F_{ij}^{e2}$$
 (3)

Здесь значения конечных центральных разностей δX_i , δY_j и нисходящих разностей ΔX_i и ΔY_j получаются подстановкой в уравнение (1) значений координат тех узловых точек элементарных квадратов, для которых они вычисляются. После подстановки в выражения (2) и (3) центральных и нисходящих разностей получаем уравнения для вычисления значений оценочной функции (4) и (5).

Используя полученные выражения (4) и (5) можно рассчитать оценочные функции практически для любой прямой или кривой второго порядка, для чего достаточно подставить в эти уравнения соответствующие значения коэффициентов A, B, C, D, E и F.

Для выбора направлений элементарных шагов, выполняемых при отработке шаговых траекторий, найдем функцию вспомогательного параметра знака $sign: sign\alpha=1$, если $\alpha>0$ либо $sign\alpha=0$, если $\alpha\leq0$. Если вместо α подставить значения переменных $\delta X_i\equiv\Delta X_i\equiv\delta_i$, $\delta Y_j\equiv\Delta Y_j\equiv\delta_j$, F_{ij}^{e1} , F_{ij}^{e2} , то можно получить соответственно функции знаков для этих переменных. С учетом таких подстановок направление элементарных шагов при формировании шаговых траекторий и движении по часовой стрелке можно определить так показано в Табл. 1.

Таблица 1 – Выбор направлений элементарных шагов с учетом знаков вспомогательных переменных

Условие	Шаг
$\overline{sign\delta_i}(\overline{signF_{ij}^{e1}}\overline{sign\delta_j}) \vee signF_{ij}^{e2}sign\delta_j) = 1$	$+\triangle x$
$sign\delta_i(\overline{sign}F_{ij}^{e1}sign\delta_j \bigvee signF_{ij}^{e2}\overline{sign\delta_j}) = 1$	$-\triangle x$
$\overline{sign\delta_j}(signF_{ij}^{e1}\overline{sign\delta_i} \bigvee \overline{signF_{ij}^{e2}}sign\delta_i) = 1$	$+\triangle y$
$sign\delta_{j}(\overline{signF_{ij}^{e1}}\overline{sign\delta_{i}}\bigvee signF_{ij}^{e2}sign\delta_{i})=1$	$-\triangle y$
$signF_{ij}^{e1}signF_{ij}^{e2} = 1$	$+\triangle x$
	$+\triangle y$

Заключение

Проверка метода формирования шаговых траекторий с использованием знаков оценочных функций $F_{i,j}^{e1}$ и $F_{i,j}^{e2}$ подтвердила возможность получения более высокой точности формирования траекторий, обеспечивающей отклонение узловых точек траектории от непрерывной линии F(x,y)=0, не превышающее величины 0,5 шага квантования. Для классических методов с приращением по одной координате максимальное отклонение составляет $\sqrt{0,5}$ шага квантования[2].

- Тормышев, Ю. И. Методы и средства формирования шаговых траекторий /Ю. И. Тормышев, М. П. Федоренко // –Мн.: Наука и техника, 1980. –144 с.
- Бегун Д. Г. Алгоритмы формирования шаговых траекторий на базе оценочной функции / Д. Г. Бегун // Технические средства защиты информации: Материалы XIII Белорусско-российской научнотехнической конф., Минск, 4–5 июня 2015г. / Белорус. гос. ун-т информ. и радиоэл.; редкол.: Л. М. Лыньков [и др.]. Минск, 2015. С. 53.

$$F_{i,j}^{e1} = \sum_{i=1}^{n} [2Ai + Bj + D] - \sum_{j=1}^{m} [2Cj + Bi + E] - Cj + F_{ijnach}^{e1}$$
(4)

$$F_{i,j}^{e2} = \sum_{i=1}^{n} [2Ai + Bj + D] - \sum_{j=1}^{m} [2Cj + Bi + E] - Aj + F_{ijnach}^{e2}$$
 (5)