Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра высшей математики

КОНТРОЛЬНЫЕ РАБОТЫ

по разделам высшей математики
«Введение в анализ» и
«Дифференциальное исчисление функций
одной переменной»

для студентов всех специальностей БГУИР дневной формы обучения

УДК 517 (075.8) ББК 22.1 я 73 K 65

Составители: О.А. Феденя, Ж.А. Черняк

Контрольные работы по разделам высшей математики «Введение в анлиз» и «Дифференциальное исчисление функций одной переменной» для студентов всех специальностей БГУИР дневной формы обучения.

Сост. О.А. Феденя, Ж.А. Черняк – МН.:БГУИР, 2002. – 48 с.

Данное издание содержит контрольные работы по курсу математического анализа, который излагается студентам БГУИР в первом семестре. Может быть использовано для проведения контрольных работ на практических занятиях, для промежуточных экзаменов, коллоквиумов, итоговых контрольных работ по отдельным разделам.

> УДК 517 (075.8) ББК 22.1 я 73

© О.А. Феденя, Ж.А. Черняк, составление, 2002 © БГУИР, 2002

Содержание

Контрольная работа «Комплексные числа»

Контрольная работа «Предел последовательности»

Контрольная работа «Введение в анализ»

Контрольная работа «Техника дифференцирования»

Контрольная работа «Введение в анализ и дифференциальное исчисление функций одной переменной»

Контрольная работа «Дифференциальное исчисление функции одной переменной»

Контрольная работа «Комплексные числа»

Вариант 1

- 1. Представить $\frac{\left(\sqrt{2}(1+i)\right)^4}{1+2i}$ в алгебраической форме.
- 2. Найти $\sqrt[3]{1}$.
- 3. Изобразить на комплексной плоскости:

$$|z-1| \le 1$$
, $|z+1| > 2$.

- 2. Найти $\sqrt[3]{i}$
- Найти √*i*.
 Изобразить на комплексной плоскости:

$$|z+i| \ge 1, \quad |z| < 2.$$

- 1. Представить $\frac{\left(\sqrt{2}\ i-\sqrt{2}\right)^4}{i-1}$ в алгебраической форме.
- 2. Найти $\sqrt[3]{-1}$.
- 3. Изобразить на комплексной плоскости:

$$|z-i| \le 2$$
, Re $z > 1$.

- 2. Найти $\sqrt[3]{-i}$.
- 3. Изобразить на комплексной плоскости:

$$|z+1| \ge 1, \quad |z+i| < 1.$$

- 1. Представить $\frac{\left(1+i\sqrt{3}\right)^6}{2-i}$ в алгебраической форме.
- 2. Найти $\sqrt[3]{8}$.
- 3. Изобразить на комплексной плоскости:

$$|z+1| < 1, \quad |z-i| \le 1.$$

- 1. Представить $\frac{\left(1-i\sqrt{3}\right)^9}{2+3i}$ в алгебраической форме.
- 2. Найти $\sqrt[3]{8i}$.
- 3. Изобразить на комплексной плоскости:

$$|z+i| \leq 2, \quad |z-i| > 2.$$

- 2. Найти $\sqrt[3]{-8}$.
- 3. Изобразить на комплексной плоскости:

$$|z-1-i| \le 1$$
, Im $z > -1$, Re $z \ge 1$.

Вариант 8

- 1. Представить $\frac{\left(-1-i\sqrt{3}\right)^6}{1-5i}$ в алгебраической форме.
- 2. Найти $\sqrt[3]{-8i}$.
- 3. Изобразить на комплексной плоскости:

$$|z-1+i| \ge 1$$
, Re $z < 1$, Im $z \le -1$.

- 3. Изобразить на комплексной плоскости: $|z-2-i| \le 2$, Re $z \ge 3$, Im z < 1.

$$|z-2-i| \le 2$$
, Re $z \ge 3$, Im $z < 1$.

Вариант 10

1. Представить $\frac{\left(\sqrt{3}-i\right)^{6}}{2-i}$ в алгебраической форме.

- 2. Найти $\sqrt[3]{\frac{i}{8}}$.
- 3. Изобразить на комплексной плоскости:

$$|z-1-i| \ge 1$$
, $0 \le \text{Re } z < 2$, $0 < \text{Im } z \le 2$.

- 1. Представить $\frac{\left(-\sqrt{3}+i\right)^6}{1-i}$ в алгебраической форме.
- 2. Найти $\sqrt[3]{-1/8}$.
- 3. Изобразить на комплексной плоскости:

$$|z+i| < 2, \quad 0 < \operatorname{Re} z \le 1.$$

Вариант 12

- 1. Представить $\frac{\left(-\sqrt{3}-i\right)^6}{3+i}$ в алгебраической форме.
- 3. Изобразить на комплексной плоскости:

$$1 < |z-1| \le 2$$
, Im $z \ge 0$, Re $z < 1$.

- $\begin{array}{c} \textbf{Вариант 13} \\ 1. \ \Pi \text{редставить } \frac{(1+i)^4}{1+3i} \ \text{ в алгебраической форме.} \end{array}$
- 2. Найти $\sqrt[3]{27}$
- 3. Изобразить на комплексной плоскости:

$$1 \le |z - i| < 2$$
, Re $z \le 0$, Im $z > 1$.

Вариант 14

- 1. Представить $\frac{(1-i)^8}{3-i}$ в алгебраической форме.
- 2. Найти $\sqrt[3]{\frac{i}{27}}$.
- 3. Изобразить на комплексной плоскости:

$$|z| > 1$$
, $-1 < \text{Im } z \le 1$, $0 < \text{Re } z \le 2$.

- 1. Представить $\frac{\left(-1-i\right)^4}{1+2i}$ в алгебраической форме.
- 2. Найти $\sqrt[3]{-27}i$.
- 3. Изобразить на комплексной плоскости:

$$|z-2-i| \ge 1$$
, $1 \le \text{Re } z < 3$, $0 < \text{Im } z \le 3$.

Контрольная работа «Предел последовательности»

Вариант 1

1. Доказать по определению, что последовательность

$$x_n = \frac{1}{n} \sin \left((2n - 1) \frac{\pi}{2} \right)$$

бесконечно малая.

2. Доказать, что последовательность

$$x_n = \begin{cases} 1, & n-четно, \\ \frac{1}{n!}, & n-нечетно \end{cases}$$

расходится.

3– 6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{(3-n)^2 + (3+n)^2}{(3-n)^2 - (3+n)^2}.$$

4.
$$\lim_{n \to \infty} n \left(\sqrt[3]{5 + 8n^3} - 2n \right)$$
.

3.
$$\lim_{n \to \infty} \frac{(3-n)^2 + (3+n)^2}{(3-n)^2 - (3+n)^2}.$$
4.
$$\lim_{n \to \infty} n \left(\sqrt[3]{5 + 8n^3} - 2n \right).$$
5.
$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n-1}{n^2} \right).$$
6.
$$\lim_{n \to \infty} \left(\frac{3n^2 - 5n}{3n^2 - 5n + 7} \right)^{n+1}.$$

6.
$$\lim_{n \to \infty} \left(\frac{3n^2 - 5n}{3n^2 - 5n + 7} \right)^{n+1}$$

7. Известно, что $\{x_n\}$ сходится, $\{y_n\}$ расходится. Что можно сказать о сходимости последовательности $\{x_n + y_n\}$? Обоснуйте.

- 1. Доказать по определению (εN) , что $\lim_{n \to \infty} \frac{3^n + 1}{2^n} = 1$.
- 2. Доказать, что последовательность

$$x_n = 5n - \frac{5}{n}$$

не ограничена.

3– 6. Найти $\lim x_n$:

3- 6. Найти
$$\lim x_n$$
:
3. $\lim_{n\to\infty} \frac{(3-n)^4 - (2-n)^4}{(1-n)^4 - (1+n)^4}$.
4. $\lim_{n\to\infty} n^2 \left(\sqrt{n(n^4-1)} - \sqrt{n^5-8}\right)$.

4.
$$\lim_{n \to \infty} n^2 \left(\sqrt{n(n^4 - 1)} - \sqrt{n^5 - 8} \right)$$

5.
$$\lim_{n \to \infty} \frac{(2n+1)! + (2n+2)!}{(2n+3)!}$$
 6. $\lim_{n \to \infty} \left(\frac{10n-3}{10n-1}\right)^{5n}$

6.
$$\lim_{n \to \infty} \left(\frac{10n - 3}{10n - 1} \right)^{5n}$$
.

7. Известно, что $\{x_n\}$ сходится, $\{y_n\}$ расходится. Что можно утверждать о сходимости последовательности $\{x_ny_n\}$? Обоснуйте.

- Вариант 3
 1. Доказать по определению (εN) , что $\lim_{n \to \infty} \frac{(-1)^n + 2^n}{2^n} = 1$.
- 2. Доказать, что последовательность

$$x_{n} = \begin{cases} 0, & n - \text{четно}, \\ \frac{3n^{2} + n + 1}{n^{2} - n - 1}, & n - \text{нечетно} \end{cases}$$

расходится

3– 6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{(3-n)^4 - (2-n)^4}{(1-n)^3 - (1+n)^3}$$
. 4. $\lim_{n \to \infty} \left(\sqrt{(n+2)(n+1)} - \sqrt{(n-1)(n+3)} \right)$.

5.
$$\lim_{n \to \infty} \left(\frac{1+3+5+...+(2n-1)}{n+1} - \frac{2n+1}{2} \right)$$
. 6. $\lim_{n \to \infty} \left(\frac{2n^2+21n-7}{2n^2+18n+9} \right)^{2n+1}$.

7. Известно, что последовательности $\{x_n\}$ и $\{y_n\}$ расходятся. Можно ли утверждать, что последовательность $\{x_n + y_n\}$ расходится? Ответ обоснуйте.

1. Доказать по определению $(\varepsilon - N)$, что $x_n = \frac{(-1)^n}{5\sqrt[3]{n+1}}$ - бесконечно малая последовательность.

2. Доказать, что последовательность $x_n = n + \frac{2}{n}$ не ограничена.

3– 6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{(1-n)^4 - (1+n)^4}{(1+n)^3 - (1-n)^3}.$$
4.
$$\lim_{n \to \infty} \left(\sqrt{n(n+2)} - \sqrt{n^2 - 2n + 3} \right).$$
5.
$$\lim_{n \to \infty} \left(\frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} \right).$$
6.
$$\lim_{n \to \infty} \left(\frac{n^3 + 1}{n^3 - 1} \right)^{2n - n^3}.$$

5.
$$\lim_{n \to \infty} \left(\frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} \right)$$
. 6. $\lim_{n \to \infty} \left(\frac{n^3 + 1}{n^3 - 1} \right)^{2n - n^3}$.

7. Известно, что последовательности $\{x_n\}$ и $\{y_n\}$ расходятся. Можно ли утверждать, что последовательность $\{x_n \cdot y_n\}$ расходится? Ответ обоснуйте.

- Вариант 5
 1. Доказать по определению, что последовательность $x_n = 5^{\sqrt[5]{n}}$ бесконечно большая.
 - 2. Доказать, что последовательность $x_n = \frac{n+1}{2n+3}$ ограничена.

3– 6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{(6-n)^2 - (6+n)^2}{(6+n)^2 - (1-n)^2}.$$
 4.
$$\lim_{n \to \infty} \left(n + \sqrt[3]{4-n^3}\right).$$

5.
$$\lim_{n \to \infty} \left(\frac{1 + 2 + 3 + \dots + n}{\sqrt{9n^4 + 1}} \right)$$
. 6. $\lim_{n \to \infty} \left(\frac{n + 3}{n + 5} \right)^{n+4}$.

5. $\lim_{n\to\infty}\left(\frac{1+2+3+...+n}{\sqrt{9n^4+1}}\right)$. 6. $\lim_{n\to\infty}\left(\frac{n+3}{n+5}\right)^{n+4}$.
7. Известно, что $\lim_{n\to\infty}x_n=\infty$. Означает ли это, что последовательность } не ограничена? Ответ обоснуйте.

Вариант 6

1. Доказать по определению, что последовательность $x_n = 3^{-n} \cos \pi n$ бесконечно малая.

2. Доказать, что последовательность

$$x_n = \begin{cases} \frac{3n+1}{2n+5}, & n-четно, \\ \frac{(-1)^n}{n}, & n-нечетно \end{cases}$$

расходится.

3– 6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n+1)^2}{(n-1)^3 - (n+1)^3}.$$

$$4. \lim_{n \to \infty} \left(\sqrt{n^2 - 3n + 2} - n \right)$$

3.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n+1)^2}{(n-1)^3 - (n+1)^3}.$$
4.
$$\lim_{n \to \infty} \left(\sqrt{n^2 - 3n + 2} - n \right).$$
5.
$$\lim_{n \to \infty} \left(\frac{1+3+5+...+(2n-1)}{1+2+3+...+n} \right).$$
6.
$$\lim_{n \to \infty} \left(\frac{2n^2 + 7n - 1}{2n^2 + 3n - 1} \right)^{-n^2}.$$

6.
$$\lim_{n \to \infty} \left(\frac{2n^2 + 7n - 1}{2n^2 + 3n - 1} \right)^{-n^2}$$

7. Известно, что последовательность $\{x_n\}$ не ограничена. Означает ли это, что $\{x_n\}$ - бесконечно большая последовательность? Ответ обоснуйте.

Вариант 7

1. Доказать по определению, что последовательность $x_n = 2\lg(5n^2 + 3)$ - бесконечно большая.

2. Доказать, что последовательность
$$x_n = \frac{3n^2 + 5n + 4}{2 + n^2}$$
 ограничена.

3– 6. Найти $\lim x_n$

3.
$$\lim_{n \to \infty} \frac{(1+2n)^3 - 8n^3}{(1+2n)^2 + 4n^2}.$$

3.
$$\lim_{n \to \infty} \frac{(1+2n)^3 - 8n^3}{(1+2n)^2 + 4n^2}$$
.

4. $\lim_{n \to \infty} \frac{\sqrt{n^5 - 8} - n\sqrt{n(n^2 + 5)}}{\sqrt{n}}$.

5.
$$\lim_{n \to \infty} \left(\frac{1+3+5+...+(2n-1)}{n+3} - n \right)$$
. 6. $\lim_{n \to \infty} \left(\frac{3n+1}{3n-1} \right)^{2n+3}$.

$$6. \lim_{n\to\infty} \left(\frac{3n+1}{3n-1}\right)^{2n+3}.$$

Привести пример последовательности $\{x_n\}$ такой, что $\{x_n\}$ расходит-

Вариант 8

1. Доказать по определению $(\varepsilon-N)$, что последовательность

$$x_n = \frac{3(-1)^n}{\lg 2n}$$
 - бесконечно малая.

- 2. Доказать, что последовательность $x_n = 2n^2 + n + 1$ не ограничена.
- 3– 6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{(3-4n)^2}{(n-3)^3 - (n+3)^3}$$
. 4. $\lim_{n \to \infty} \left(\sqrt{(n^2+1)(n^2-4)} - \sqrt{n^4-9} \right)$.

5.
$$\lim_{n \to \infty} \frac{1 + 4 + 7 + \dots + (3n - 2)}{\sqrt{5n^4 + n + 1}}$$
. 6. $\lim_{n \to \infty} \left(\frac{5n^2 + 3n - 1}{5n^2 + 3n + 3} \right)^{n^2}$.

7. Привести пример такой последовательности $\{x_n\}$, что для всех $n\in N$ $x_n>-1$, но $\lim_{n\to\infty}x_n=-1$.

Вариант 9

- 1. Доказать по определению (εN) , что $\lim_{n \to \infty} \frac{3n^2 + 1}{1 2n^2} = -\frac{3}{2}$.
- 2. Сходится ли последовательность

$$x_n = \begin{cases} \frac{1}{2^n}, & n-\text{четно}, \\ \frac{2^n}{2^n+1}, & n-\text{нечетно} \end{cases}$$

Ответ обоснуйте.

3– 6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{(3-n)^3}{(n+1)^2 - (n+1)^3}$$
. 4. $\lim_{n \to \infty} n\sqrt{n} \left(\sqrt{n - \sqrt[3]{n^3 - 5}} \right)$.

5.
$$\lim_{n \to \infty} \frac{(n+4)! - (n+2)!}{(n+3)!}$$
 6. $\lim_{n \to \infty} \left(\frac{n-1}{n+1}\right)^{n^2}$

7. Привести пример такой последовательности $\{x_n\}$, что для всех $n\in N$ $x_n<2$, но $\lim_{n\to\infty}x_n=2$.

1. Доказать по определению $(\varepsilon-N)$, что последовательность

$$x_n = \frac{2^n + 1}{3^n + 1} \operatorname{arctg} n - \operatorname{бесконечно}$$
малая.

2. Сходится ли последовательность

$$x_n = \begin{cases} n!, & n - \text{четно}, \\ \frac{1}{n!}, & n - \text{нечетно} \end{cases}$$

Ответ обоснуйте.

3– 6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{(n+1)^2 + (n-1)^2 - (n+2)^3}{(4-n)^3}$$
4.
$$\lim_{n \to \infty} n \left(\sqrt{n(n+2)} - \sqrt{n^2 + 1} \right)$$

5.
$$\lim_{n \to \infty} \frac{(3n-1)! + (3n+1)!}{(n-1)(3n)!}$$
.
6. $\lim_{n \to \infty} \left(\frac{2n^2 + 5n + 7}{2n^2 + 5n + 3} \right)^n$.

7. Привести пример такой последовательности $\{x_n\}$, что $\lim_{n\to\infty} x_n = -1$, а среди ее членов бесконечно много как членов $x_k > -1$, так и членов $x_m < -1$.

Вариант 11

- 1. Доказать по определению, что последовательность $x_n = n^2 + 10$ бесконечно большая.
- 2. Выяснить, является ли последовательность $x_n = \frac{2^n 4}{9 \cdot 7^n + 5}$ ограниченной. Ответ обоснуйте.

3–6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{2(n+1)^3 - (n-2)^3}{n^2 + 2n - 3}$$
4.
$$\lim_{n \to \infty} n \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 1} \right)$$

5.
$$\lim_{n \to \infty} \frac{2^n - 5^{n+1}}{3 \cdot 2^{n+1} + 5^{n+2}}$$
. 6. $\lim_{n \to \infty} \left(\frac{n^2 + n + 1}{n^2 + n - 1} \right)^{-7n^2}$.

7. Известно что последовательности $\{x_n\}$ и $\{y_n\}$ расходятся. Можно ли утверждать, что $\left\{ \frac{x_n}{v_n} \right\}$ тоже расходится? Ответ обоснуйте.

Вариант 12

1. Доказать по определению $(\varepsilon - N)$, что последовательность

$$x_n = \frac{5(-1)^n}{4n^2 + 3}$$
 - бесконечно малая.

2. Является ли последовательность

$$x_n = \frac{n! + (n+2)!}{3(n-1)! + 2(n+2)!}$$
 ограниченной?

Ответ обоснуйте.

3– 6. Найти $\lim x_n$:

3.
$$\lim_{n \to \infty} \frac{\sqrt[4]{n^3 + 2n} + \sqrt[5]{n^2 + n + 5}}{\sqrt{n+1} + 2n + 7}$$
4.
$$\lim_{n \to \infty} \left(n - \sqrt[3]{n^3 - 2n^2 + 1} \right)$$
5.
$$\lim_{n \to \infty} \frac{3 + 9 + \dots + 3^{n+1}}{2 \cdot 3^{n+2} + (-2)^n}$$
6.
$$\lim_{n \to \infty} \left(\frac{7n + 3}{7n + 2} \right)^{3n - 1}$$

5.
$$\lim_{n \to \infty} \frac{3+9+...+3^{n+1}}{2 \cdot 3^{n+2} + (-2)^n}$$
. 6. $\lim_{n \to \infty} \left(\frac{7n+3}{7n+2}\right)^{3n-1}$

7. Привести пример ограниченной расходящейся последовательности.

Контрольная работа «Введение в анализ»

Вариант 1

1. Решить уравнение $z^3 + \frac{1}{\sqrt{3} - i} = 0$.

2. Исследовать на непрерывность и построить график функции

$$f(x) = \frac{1}{1 + e^{\frac{1}{(1-x)}}}.$$

3. Доказать, что $(x-1)(2-x-x^3)=o\ (1-\sqrt{x})$ при $x\to 1$.

4. Найти главную часть функции $f(x) = \frac{1-\cos x\sqrt{\cos 2x}}{x^5}$ вида αx^{β} при $x \to 0$.

- 5. Найти f(+0) и f(-0), если $f(x) = (2+x)^{1/x}$.
- 6. Вычислить:

1)
$$\lim_{x \to \frac{1}{2}} \frac{(2x-1)^2}{e^{\sin \pi x} - e^{-\sin 3\pi x}};$$

1)
$$\lim_{x \to \frac{1}{2}} \frac{(2x-1)^2}{e^{\sin \pi x} - e^{-\sin 3\pi x}};$$

2) $\lim_{x \to \frac{\pi}{2}} \sqrt{3\sin x + (2x - \pi)\sin \frac{x}{2x - \pi}};$
3) $\lim_{x \to 0} \frac{6^{3x} - 6^{-2x}}{2\arcsin x - \sin x + 3tg^3x}.$

3)
$$\lim_{x \to 0} \frac{6^{3x} - 6^{-2x}}{2\arcsin x - \sin x + 3tg^3 x}$$

Вариант 2

1. Решить уравнение $z^3 + \frac{2\sqrt{2}}{1+i} = 0$.

2. Исследовать на непрерывность и построить график функции

$$f(x) = \frac{2^{\frac{1}{x}} - 1}{2^{\frac{1}{x}} + 1}.$$

3. Доказать, что $\ln \cos x = o \ (3^{\sin 2x} - 1)$ при $x \to 2\pi$.

4. Найти главную часть функции $f(x) = \sin^2 2x + \arcsin^2 x + 2 \operatorname{arctg} x^2$ вида αx^{β} при $x \to 0$.

5. Найти
$$f(+0)$$
 и $f(-0)$, если $f(x) = \frac{x - |x|}{2x}$.

6. Вычислить:

1)
$$\lim_{x \to 2} \frac{\ln(x - \sqrt[3]{2x - 3})}{\sin \frac{\pi x}{2} - \sin \pi (x - 1)};$$

2)
$$\lim_{x \to +\infty} \frac{e^{\frac{1}{2}} + \sin \frac{3}{n} arctg \sqrt{n+2}}{1 + \sin \frac{5n}{n^2+2}};$$

3)
$$\lim_{x \to 0} \frac{6^{2x} - 7^{-2x}}{\sin 3x - 2x^2 + 5arctg\sqrt[3]{x^4}}.$$

Вариант 3

1. Решить уравнение
$$z^3 + \frac{4}{1 + i\sqrt{3}} = 0$$
.

2. Исследовать на непрерывность и построить график функции

$$f(x) = arctg \frac{1}{1 - x^2}.$$

3. Доказать, что
$$e^{\cos^3 x} - 1 = o(\lg \sin x)$$
 при $x \to \frac{\pi}{2}$.

4. Найти главную часть функции $f(x)=1-\cos\left(1-\cos\left(\frac{1}{x}\right)\right)$ вида α x^{β} при $x \to \infty$.

5. Найти
$$f\left(\frac{\pi}{2}+0\right)$$
 и $f\left(\frac{\pi}{2}-0\right)$, если $f(x)=sign(\cos x)$.

6. Вычислить:

1)
$$\lim_{x \to 1} \left(\frac{2x-1}{x} \right)^{\ln(3+2x)/\ln(2-x)}$$
;

2)
$$\lim_{x \to 0} \frac{tgx \cdot \cos \frac{1}{x} + \lg(2+x)}{\lg(4+x)};$$

3)
$$\lim_{x \to 0} \frac{e^{4x} - e^{-2x}}{2arctgx - \sin^2 x - 4\ln(1 + 5x^3)}.$$

- 1. Решить уравнение $z^3 \frac{2\sqrt{2}}{1} = 0$.
- 2. Исследовать на непрерывность и построить график функции

$$f(x) = -\frac{2}{x(x+2)}.$$

- 3. Доказать, что $\ln \sin x = o (e^{\cos x} e^{\cos 3x})$ при $x \to \pi/2$.
- 4. Найти главную часть функции $f(x) = 3\sin^2 x^2 5x^2$ вида αx^{β} при $x \to 0$.
 - 5. Найти $f(2\pi 0)$ и $f(2\pi + 0)$, если $f(x) = \frac{x^2}{\cos x 1}$.
 6. Вычислить:
 1) $\lim_{x \to 0} \frac{tgx tg2}{x}$

 - 1) $\lim_{x \to 2} \frac{tgx tg2}{\sin \ln(x 1)}$; 2) $\lim_{x \to 0} (\sqrt{1 + x} x)^{1/x}$;
 - 3) $\lim_{x \to 0} \frac{12^x 5^{-3x}}{2\arcsin x x + 2\ln(1 + tg^2 2x)}$

- Вариант 5

 1. Решить уравнение $z^3 \frac{4}{1 i \cdot \sqrt{2}} = 0$.
- 2. Исследовать на непрерывность и построить график функции

$$f(x) = \frac{1}{\ln|x|}.$$

- 3. Доказать, что $\sqrt[3]{\sin 7\pi x} = o(\sqrt[4]{x \sin 8\pi x})$ при $x \to 3$.
- 4. Найти главную часть функции $f(x) = 2e^{x^4} + (\cos x 1)^2 + x^5 2$ вида αx^{β} при $x \to 0$.
 - 5. Найти f(1-0) и f(1+0), если $f(x) = \frac{2(1-x^2) + \left|1-x^2\right|}{3(1-x^2) \left|1-x^2\right|}$.
 - 6. Вычислить:

1)
$$\lim_{x\to 2} \frac{\arcsin\frac{x+2}{2}}{3^{\sqrt{2+x+x^2}}-9}$$
;

1)
$$\lim_{x \to 2} \frac{\arcsin \frac{x+2}{2}}{3^{\sqrt{2+x+x^2}} - 9}$$
; 2) $\lim_{n \to +\infty} \frac{3\sin n + \sqrt{n-1}}{n + \sqrt{n+1}}$;

3)
$$\lim_{x \to 0} \frac{e^{7x} - e^{-2x}}{\sin x - 2x^2 + 5arctg^2 3x}.$$

- 1. Решить уравнение $z^3 \frac{2\sqrt{2}}{1+i} = 0$.
- 2. Исследовать на непрерывность и построить график функции $f(x) = \frac{1}{1 - 2^{1-x}}.$

3. Доказать, что
$$\lg\left(2 + \sin\frac{\pi x}{2}\right) = o\left(e^{\sin\pi x} - 1\right)$$
 при $x \to -1$.

- 4. Найти главную часть функции $f(x) = 2\sin x tg2x$ вида αx^{β} при $x \to 0$.
 - 5. Найти $f\left(\frac{\pi}{2}-0\right)$ и $f\left(\frac{\pi}{2}+0\right)$, если f(x)=arctg(tgx).
 - 6. Вычислить:

1)
$$\lim_{x \to \pi} \frac{\cos \frac{x}{2}}{e^{\sin x} - e^{\sin 4x}};$$

1)
$$\lim_{x \to \pi} \frac{\cos \frac{x}{2}}{e^{\sin x} - e^{\sin 4x}};$$
 2)
$$\lim_{x \to 0} \frac{\sqrt[3]{tgx} \cdot arctg \frac{1}{x} + 3}{2 - \lg(1 + \sin x)};$$

3)
$$\lim_{x \to 0} \frac{4^x - 2^{7x}}{tg^{3x} - x + 2\arcsin^3 x}$$
Bapuaht 7

- 1. Решить уравнение $z^3 + \frac{2\sqrt{2}}{1} = 0$.
- Исследовать на непрерывность и построить график функции $f(x) = \frac{1}{5 - 5^x}.$
 - 3. Доказать, что $\log_2(\sin\frac{\pi x}{4}) = o(1 e^{tg2\pi x})$ при $x \to 2$.
- 4. Найти главную часть функции $f(x) = \sqrt{2x + \sqrt{3x + \sqrt{4x}}}$ вида αx^{β} при: a) $x \to +0$, б) $x \to +\infty$.

5. Найти
$$f(-0)$$
 и $f(+0)$, если $f(x) = 2^{ctgx}$.

6. Вычислить:

1)
$$\lim_{x \to 2} \frac{tg \ln(3x - 5)}{e^{x+3} - e^{x^2} + 1}$$
; 2) $\lim_{x \to a} \left(\frac{\sin x}{\sin a}\right)^{\frac{1}{x-a}}$;

3)
$$\lim_{x \to 0} \frac{7^{2x} - 7^{-5x}}{2\sin x - tgx + \sqrt{\arcsin^3 2x}}.$$

Вариант 8

1. Решить уравнение
$$z^3 + \frac{4}{1 - i\sqrt{3}} = 0$$
.

2. Исследовать на непрерывность и построить график функции

$$f(x) = \frac{1}{2 + \ln x}.$$

3. Доказать, что
$$\ln(1+x^2)$$
 $tg4x = o\left(\sqrt{1+\arcsin x^2} - 1\right)$ при $x \to 0$.

4. Найти главную часть функции $f(x) = \sin(\sqrt{x^2 + 9} - 3)$ вида αx^{β} при $x \to 0$.

5. Найти
$$f(-0)$$
 и $f(+0)$, если $f(x) = (1-x)^{1/x^2}$.

6. Вычислить:

1)
$$\lim_{x \to \pi} \frac{\ln(2 + \cos x)}{(3^{\sin x} - 1)^2}$$
;

2)
$$\lim_{x \to 0} \ln \left((e^{x^2} - \cos x) \cos \frac{1}{x} + tg(x + \frac{\pi}{3}) \right);$$
3)
$$\lim_{x \to 0} \frac{4^{5x} - 9^{-2x}}{\sin x - tg 3x^2 + 11 + \ln(1 + 7x^5)}.$$

3)
$$\lim_{x \to 0} \frac{4^{5x} - 9^{-2x}}{\sin x - tg^3 x^2 + 11 + \ln(1 + 7x^5)}$$

1. Решить уравнение
$$z^3 - \frac{4}{\sqrt{3} - i} = 0$$
.

2. Исследовать на непрерывность и построить график функции

$$f(x) = \frac{1}{1 + 2^{tgx}}.$$

3. Доказать, что $x^3 - 3x - 2 = o\left(x^2 - x - 2\right)$ при $x \to -1$.

4. Найти главную часть функции $f(x) = \frac{\ln x}{(x-1)(x^2-1)}$ вида $\alpha (x-1)^{\beta}$

при $x \to 1$.

5. Является ли $f(x) = \left(\frac{x+1}{2x-1}\right)^x$ бесконечно большой при: a) $x \to +\infty$,

б) $x \to -\infty$.

6. Вычислить:

1)
$$\lim_{x \to \pi} \frac{(x^3 - \pi^3)\sin 5x}{e^{\sin^2 x} - 1}$$
;

2)
$$\lim_{x \to 1} \ln \frac{\cos 2\pi x}{2 + \left(e^{\sqrt{x-1}} - 1\right) \arctan \frac{x+2}{x-1}}$$

3)
$$\lim_{x \to 0} \frac{5^{2x} - 2^{3x}}{\sin x + \sin x^2 - \arcsin(tg^3 x)}$$
.

Вариант 10

1. Решить уравнение
$$z^3 + \frac{4}{\sqrt{3} + i} = 0$$
.

2. Исследовать на непрерывность и построить график функции

$$f(x) = \frac{1}{arctgx}.$$

3. Доказать, что $x^3 - x^2 - x + 1 = o(x^3 - x)$ при $x \to 1$.

4. Найти главную часть функции $f(x) = \sqrt[4]{x^2 + 1} - \sqrt{x^2 - 1}$ вида $\alpha \, x^{\beta}$ при $x \to +\infty$.

5. Найти
$$f(3-0)$$
 и $f(3+0)$, если $f(x) = \frac{1}{x+3^{\frac{1}{3-x}}}$.

6. Вычислить:

1)
$$\lim_{x \to 1} \left(\frac{\sin(x-1)}{x-1} \right)^{\frac{\sin(x-1)}{x-1-\sin(x-1)}}$$
;

2)
$$\lim_{x\to 0} \sqrt{4\cos 3x + x \arctan t g \frac{1}{x}};$$

3)
$$\lim_{x\to 0} \frac{5^{2x} - 3^{5x}}{1 - \cos\sqrt{x} + \arcsin 7x^2}$$
.

1. Решить уравнение $z^3 - \frac{2}{1-i} = 0$.

2. Исследовать на непрерывность и построить график функции

$$f(x) = \frac{1}{\lg x}.$$

3. Доказать, что $e^{\sin x} - e^{tgx} = o \left(\ln \cos 2x \right)$ при $x \to 2\pi$.

4. Найти главную часть функции $f(x) = 2\sin\sqrt{x^2 + \sqrt{x^3}} + \ln(1 + 2x\sqrt{x})$ вида αx^{β} при $x \to 0$.

5. Найти f(-0) и f(+0), если $f(x) = sign(\sin x)$.

6. Вычислить:

1)
$$\lim_{x \to 2\pi} \frac{(x-2\pi)^2}{tg(\cos x - 1)}$$
;

2)
$$\lim_{x \to -2} \sqrt{\frac{1 + \cos \pi x}{4 + (x + 2)\sin \frac{x}{x + 2}}}$$
;

2)
$$\lim_{x \to -2} \sqrt{\frac{1 + \cos \pi x}{4 + (x + 2)\sin \frac{x}{x + 2}}};$$

3) $\lim_{x \to 0} \frac{\sqrt{x} \arcsin \sqrt{x} (e^{7\sqrt[3]{x}} - 1)}{tg(3\sqrt[3]{x})(2^{5x} - 3^{4x})}.$

Вариант 12

1. Решить уравнение
$$z^3 + \frac{4}{1 + i\sqrt{3}} = 0$$
.

2. Исследовать на непрерывность и построить график функции $f(x) = arctg \frac{1}{x}$

3. Доказать, что
$$\sqrt{4-x^2}+x^2-2=o(x)$$
 при $x\to 0$.

4. Найти главную часть функции
$$f(x) = arctg(3-x) + \sin(x-3)^2$$
 вида $\alpha(x-3)^{\beta}$ при $x \to 3$.

5. Найти
$$f\left(\frac{\pi}{2} - 0\right)$$
 и $f\left(\frac{\pi}{2} + 0\right)$, если $f(x) = 2^{tgx}$.

6. Вычислить:

1)
$$\lim_{x \to 3} \left(\frac{\sin x}{\sin 3} \right)^{1/(x-3)};$$

2)
$$\lim_{x\to 0} \frac{2 + \ln(e + x \sin \frac{1}{x})}{\cos x + \sin x}$$
;

3)
$$\lim_{x \to 0} \frac{x \arcsin\sqrt[3]{2x} + \sin^2 5x - x^2}{tg\sqrt[3]{x} \ln(1+3x)}.$$

Вариант 13

1. Решить уравнение
$$z^3 + \frac{12}{3 - i\sqrt{3}} = 0$$

2. Исследовать на непрерывность и построить график функции

$$f(x) = \frac{1}{2^{\frac{1}{1-x}} + 1}.$$

3. Доказать, что
$$\sin(\sqrt{7x^2+4}-2) = o(2^x-1)$$
 при $x \to 0$.

4. Найти главную часть функции
$$f(x) = \ln \cos x - \sqrt{1+x^3+1}$$
 вида $\alpha \, x^\beta$ при $x \to 0$.

5. Найти
$$f(2-0)$$
 и $f(2+0)$, если $f(x) = \frac{2+x}{4-x^2}$.

6. Вычислить:

1)
$$\lim_{x \to \frac{\pi}{2}} \frac{e^{\sin 2x} - e^{tg 2x}}{\ln\left(\frac{2x}{\pi}\right)};$$

2)
$$\lim_{x \to 0} \frac{\cos x + \ln(x+1)\sqrt{2 + \cos\frac{1}{x}}}{2 + e^x};$$

3)
$$\lim_{x \to 0} \frac{\sin 2x - 2tg^2 3x + arctg 5x^6}{2^{5x} - 2^{4x}}.$$

1. Решить уравнение $z^3 + \frac{8}{1-i} = 0$.

2. Исследовать на непрерывность и построить график функции

$$f(x) = \frac{1}{x^2(x-1)}.$$

3. Доказать, что $1 - \sqrt{\cos x} = o \ (1 - \cos \sqrt{x})$ при $x \to 0$

4. Найти главную часть функции $f(x) = \sqrt[4]{1+x^2} + x^3 - 1$ вида $\alpha \, x^\beta$ при $x \to 0$.

5. Найти f(-0) и f(+0), если $f(x) = \frac{x+|x|}{5x}$

6. Вычислить:

1)
$$\lim_{x \to 1} \frac{\sqrt[3]{1 + \ln^2 x} - 1}{1 + \cos \pi x}$$
;

2)
$$\lim_{x\to 0} \sqrt{(e^{\sin x} - 1)\cos \frac{1}{x} + 4\cos x}$$
;

3)
$$\lim_{x \to 0} \frac{tg^7 6x + \sin^6 7x}{4^{5x^6 + x^9} - 4^{\sin 3x^6}}.$$

Вариант 15

1. Решить уравнение $z^3 - \frac{20}{1 + i\sqrt{3}} = 0$.

2. Исследовать на непрерывность и построить график функции

$$f(x) = arcctg \frac{1}{x+3}.$$

3. Доказать, что $1 - \sin \frac{x}{2} = o (\pi - x)$ при $x \to \pi$.

4. Найти главную часть функции
$$f(x)=\frac{3x^2arctgx}{7x^3+4x^2+2}$$
 вида $\alpha\,x^{\,\beta}$ при $x\to +\infty$.

- 5. Найти f(-0) и f(+0), если $f(x) = 1(\sin x)$.
- 6. Вычислить:

1)
$$\lim_{x \to 1} \left(\frac{x+1}{2x} \right)^{\frac{\ln(x+2)}{\ln(2-x)}};$$

2)
$$\lim_{x \to \pi/2} \frac{2 + \cos x \cdot \sin \frac{2}{2x - \pi}}{3 + 2x \sin x}$$
;

3)
$$\lim_{x \to 0} \frac{\left(3^{5x} - 4^{2x}\right)x^3}{2e^{x^4} + (\cos x - 1)^2 + x^5 - 2}.$$

Контрольная работа «**Техника дифференцирования**»

Вариант 1

1.
$$d\left(\sqrt{x} + 2\sqrt{x + \sqrt{x}}\right) = ?$$

1.
$$d\left(\sqrt{x} + 2\sqrt{x} + \sqrt{x}\right) = ?$$

2. $f(x) = |x|$; $f'_{+}(0) = ?$ $f'_{-}(0) = ?$
3. $y = (\cos x)^{\frac{1}{x}}$; $y' = ?$

3.
$$y = (\cos x)^{1/x}$$
; $y' = ?$

4.
$$\begin{cases} x = \cos t + t \sin t, \\ y = \sin t - t \cos t; \end{cases} y''_{xx} = ?$$

5.
$$y = x^2 e^{3x}$$
; $d^{10}y = ?$

6. Доказать, что функция

$$y(x) = c_1 e^x + c_2 e^{-x} - x \sin x - \cos x, \quad c_1, c_2 \in R$$

удовлетворяет уравнению

$$y'' - y = 2x \sin x.$$

7.
$$y = \sin^2 x$$
; $y^{(n)} = ?$

Вариант 2

1.
$$d\left(2\sqrt{x^3}\left(\ln x^3 - 2\right)\right) = ?$$

2.
$$f(x) = |x^2 - 5x + 6|$$
; $f'_{+}(2) = ?$ $f'_{-}(2) = ?$

3.
$$y = (x+1)^{1/\sin x}$$
; $y' = ?$

4.
$$\begin{cases} x = t^2 + 2t, \\ y = \ln(1+t); \end{cases} y''_{xx} = ?$$

5.
$$y = xe^{5x}$$
; $d^{11}y = ?$

6. Доказать, что функция

$$y(x) = c_1 e^{x-2} + c_2 e^{2x} - \frac{e^{2x}}{20} (\sin 2x + 2\cos 2x), \quad c_1, c_2 \in \mathbb{R},$$

удовлетворяет уравнению

творяет уравнению
$$y'' - 4y = e^{2x} \sin 2x.$$

7.
$$y = \sin^2 x \sin 2x$$
; $y^{(n)} = ?$

1.
$$d\left(\arccos e^{x}\right) = ?$$

2.
$$f(x) = |2^x - 2|$$
; $f'_{+}(1) = ?$ $f'_{-}(1) = ?$

3.
$$y = x^{(x/\ln 3 x)}$$
; $y' = ?$

3.
$$y = x^{\left(\frac{x}{\ln^3 x}\right)}$$
; $y' = ?$
4. $\begin{cases} x = 1 + e^{at}, \\ y = at + e^{-at}; \end{cases}$ $y''_{xx} = ?$

5.
$$y = x \ln x$$
; $d^5 y = ?$

6. Проверить, является ли функция

$$y(x) = e^x(c_1 \cos x + c_2 \sin x - 2x \cos x), \quad c_1, c_2 \in R,$$
 решением уравнения

$$y'' - 2y' + 2y = 4e^x \sin x.$$

7.
$$y = \frac{1}{\sqrt{1-2x}}$$
; $y^{(n)} = ?$

1.
$$d \left(\ln(\sqrt{1+2\sin x} + \sqrt{2\sin x - 1}) \right) = ?$$

2.
$$f(x) = \sqrt[3]{\sin \pi x}$$
; $f'_{+}(2k) = ?$ $f'_{-}(2k) = ?$ $k \in \mathbb{Z}$.

3.
$$y = \sqrt[x]{(2x\sin x + 1)^2}$$
; $y' = ?$

4.
$$\begin{cases} x = \frac{t}{(1-t)}, & y''_{xx} = ? \\ y = \frac{t^2}{(1-t)}; & \end{cases}$$

5.
$$y = x^3 \cos 5x$$
; $d^{15}y = ?$

6. Проверить, является ли функция

$$y(x) = c_1 e^{3x} + c_2 e^{4x} - x e^{4x}, \quad c_1, c_2 \in R,$$

решением уравнения

$$y'' - 7y' + 12y = -e^{4x}$$

$$y'' - 7y' + 12y = -e^{4x}$$
.
7. $y = (x-1) 2^{x-1}$; $y^{(n)} = ?$

Вариант 5

1.
$$d\left(5sh^{7}\left(\frac{x}{35}\right) + 7sh^{5}\left(\frac{x}{35}\right)\right) = ?$$

2.
$$f(x) = \arccos(\frac{1}{x});$$
 $f'_{+}(-1) = ?$ $f'_{-}(-1) = ?$
3. $y = x^{tg(\ln x)};$ $y' = ?$

3.
$$y = x^{tg(\ln x)}; \quad y' = ?$$

4.
$$\begin{cases} x = \arccos t, \\ y = \ln(1 - t^2); \end{cases} \quad y''_{xx} = ?$$

5.
$$y = \frac{3x-1}{3x+1}$$
; $d^{10}y = ?$

6. Проверить, является ли функция

$$y(x) = c_1 + c_2 e^{2x} + \frac{x}{4} - \frac{x^2}{4} - \frac{x^3}{6}, \quad c_1, c_2 \in \mathbb{R},$$

решением уравнения

$$y'' - 2y' = x^2 - 1.$$

7.
$$y = (2x-1) 2^{3x} \cdot 3^{2x}$$
; $y^{(n)} = ?$

Вариант 6

1.
$$d\left(\frac{\arcsin x}{\sqrt{1-x^2}} + \ln\sqrt{\frac{1-x}{1+x}}\right) = ?$$

2.
$$f(x) =\begin{cases} x, & ecnu \ x \le 0, \\ \sqrt[3]{x^4} \ln x, & ecnu \ > 0; \end{cases}$$
 $f'_{+}(0) = ?$ $f'_{-}(0) = ?$

3.
$$y = (x^2 + 1)^{x^5}$$
; $y' = ?$

3.
$$y = (x^{2} + 1)^{x^{2}}$$
; $y' = ?$
4.
$$\begin{cases} x = \frac{1}{(t+1)}, \\ y = \left(\frac{t}{t+1}\right)^{2}; \end{cases} y''_{xx} = ?$$

5.
$$y = \frac{x}{x^2 - 1}$$
; $d^{30}y = ?$

6. Проверить, является ли функция

$$y(x) = e^{x}(c_1 + c_2x + x^2), \quad c_1, c_2 \in R,$$

решением уравнения

$$y'' - 2y' + y = 2e^x.$$

7.
$$y = x \log_2(1-3x); \quad y^{(n)} = ?$$
Вариант 7

1.
$$d\left(\ln\frac{1+\sqrt{\sin x}}{1-\sqrt{\sin x}}+2arctg\sqrt{\sin x}\right)=?$$

2.
$$f(x) = \begin{cases} 2x, & ecnu \ x < 0, \\ \ln(1 + \sqrt[5]{x^7}), & ecnu \ x \ge 0; \end{cases}$$
 $f'_{+}(0) = ?$ $f'_{-}(0) = ?$

3.
$$y = \left(\cos\frac{x}{2}\right)^{\sin 2x}$$
; $y' = ?$

4.
$$\begin{cases} x = \sqrt{2t} \\ y = \frac{t}{\sqrt{1 - t^2}}; \quad y''_{xx} = ? \end{cases}$$

5.
$$y = e^x \cos x$$
; $d^4 y = ?$

6. Проверить, является ли функция

$$y(x) = c_1 + c_2 e^{2x} + \frac{1}{2} x e^{2x} - \frac{5}{2} x, \quad c_1, c_2 \in \mathbb{R},$$

решением уравнения

$$y'' - 2y' = e^{2x} + 5.$$

7.
$$y = \ln(x-1)^{2x}$$
; $y^{(n)} = ?$

Вариант 8

1.
$$d\left(\frac{1}{x} + \ln\frac{x-1}{x}\right)$$
 при $x_0 = -1$.

2.
$$f(x) = \begin{cases} \frac{x}{|x|} (1 - x^2), & ecnu \ x \neq 0, \\ 1, & ecnu \ x = 0; \end{cases}$$
 $f'_{+}(0) = ?$ $f'_{-}(0) = ?$

3.
$$y = (\sin 2x)^{\ln \sin 2x}$$
; $y' = ?$

4.
$$\begin{cases} x = \sin t, \\ y = \ln \cos t; \end{cases} \quad y''_{xx} = ?$$

5.
$$y = x^2 \sin 2x$$
; $d^{20}y = ?$
6. Проверить, является ли функция

$$y(x) = c_1 + c_2 e^{-x} + e^x + \frac{5}{2}x^2 - 5x, \quad c_1, c_2 \in \mathbb{R},$$

решением уравнения

$$y'' + y' = 5x + 2e^x.$$

7.
$$y = x \ln(x^2 - 3x + 2);$$
 $y^{(n)} = ?$

1. Найти $dy(M_0)$, где $M_0=(2;1)$, если функция y(x) задана неявно уравнением $xy-\sqrt[3]{xy^2+6}=0\,.$

2.
$$f(x) = \begin{cases} \frac{1}{1+e^{1/x}}, & ecnu \ x \neq 0, \\ 1+e^{1/x}, & f'_{+}(0) = ? \quad f'_{-}(0) = ? \\ 0, & ecnu \ x = 0; \end{cases}$$

3.
$$y = (tg\sqrt{x})^{1/x}$$
; $y' = ?$

4.
$$\begin{cases} x = \sin 2t \\ y = 2\cos ec^2 t \end{cases}$$
; $y''_{xx} = ?$

5.
$$y = (3x+1)\ln^2 3x$$
; $d^3y = ?$

6. Проверить, является ли функция

$$y(x) = \left(c_1 + c_2 x + \frac{x^2}{2}\right)e^{-x} + \frac{1}{4}e^x, \quad c_1, c_2 \in R,$$

решением уравнения

$$y'' + 2y' + y = e^x + e^{-x}$$
.

7.
$$y = \frac{x^2}{\sqrt{1 - 2x}}$$
; $y^{(n)} = ?$

Вариант 10

1. Найти $dy(M_0)$, где $M_0=(4;2)$, если функция y(x) задана неявно

уравнением
$$xe^{\left(\frac{x}{y^2}-1\right)}-2y=0$$
.

2.
$$f(x) = \begin{cases} arctg \frac{1+x}{1-x}, & ecnu \ x \neq 1, \\ \frac{\pi}{2}, & ecnu \ x = 1; \end{cases} f'_{+}(1) = ? \quad f'_{-}(1) = ?$$

3.
$$y = (\arcsin x)^{5x^2}$$
; $y' = ?$

4.
$$\begin{cases} x = \frac{1}{t}, \\ y = \frac{1}{(t^2 + 1)}; \end{cases} y''_{xx} = ?$$

5.
$$y = x \sin x$$
; $d^{10}y = ?$

6. Проверить, является ли функция

$$y(x) = (c_1 \cos 3x + c_2 \sin 3x)e^x + \frac{1}{37}(\sin 3x + 6\cos 3x) + \frac{e^x}{9}, \quad c_1, \ c_2 \in R,$$
 решением уравнения

$$y'' - 2y' + 10y = \sin 3x + e^x.$$

7.
$$y = e^{2x} \sin^2 x$$
; $y^{(n)} = ?$

Вариант 11

1. Найти $dy(M_0)$, где $M_0 = (1; 0)$, если функция y(x) задана неявно $4xy^3 + \ln \sqrt[3]{x/(x+y)} = 0$. уравнением:

2.
$$f(x) = \begin{cases} arctg(\frac{1}{|x|}), & ecnu \ x \neq 0, \\ \frac{\pi}{2}, & ecnu \ x = 0, \end{cases}$$

3. $y = (x^2 + 5x - 1)^{ctgx}; \quad y' = ?$
4. $\begin{cases} x = e^t \cos t, \\ y = e^t \sin t; \end{cases}$ $y''_{xx} = ?$

3.
$$y = (x^2 + 5x - 1)^{ctgx}$$
; $y' = ?$

4.
$$\begin{cases} x = e^t \cos t, \\ y = e^t \sin t; \end{cases} \quad y''_{xx} = ?$$

5.
$$y = \frac{\ln(5+2x)}{5+2x}$$
; $d^3y = ?$

6. Проверить, является ли функция

$$y(x) = (c_1 + c_2 x + x^2)e^{2x} + \frac{x+1}{8}, \quad c_1, c_2 \in \mathbb{R},$$

решением уравнения

$$y'' - 4y' + 4y = 2e^{2x} + \frac{x}{2}.$$

7.
$$y = e^{ax} \cos(bx + c)$$
; $y^{(n)} = ?$

Вариант 12

1.
$$d\left(x\sqrt{64-x^2}+64\arcsin\frac{x}{8}\right) = ?$$

2.
$$f(x) = |\sin 2x|$$
; $f'_{+}(0) = ?$ $f'_{-}(0) = ?$

3.
$$y = x^{\frac{-\cos x}{e^x}}$$
; $y' = ?$

4.
$$\begin{cases} x = \sin t, \\ y = \cos^4 \frac{t}{2}; \end{cases} \quad y''_{xx} = ?$$

5.
$$y = x \cos(x^2)$$
; $d^4 y = ?$

6. Проверить, является ли функция

$$y(x) = e^{x} (c_1 \cos 2x + c_2 \sin 2x) + \frac{xe^{x}}{4} \sin 2x^{x}, \quad c_1, c_2 \in \mathbb{R},$$

решением уравнения

$$y'' - 2y' + 5y = e^x \cos 2x.$$

7.
$$y = \sin ax \sin bx$$
; $y^{(n)} = ?$

Контрольная работа

«Введение в анализ и дифференциальное исчисление функций одной переменной»

Вариант 1

1. Вычислить

$$\lim_{x \to \infty} \left(\frac{\sqrt[3]{tg \frac{1}{x}} \ arctgx^3 + 5}{2 - \lg(1 + \arcsin\frac{1}{x^2 + 10})} + \left(\frac{3x + 1}{3x - 1} \right)^{2x + 3} \right).$$

2. Найти главную часть функции f(x) вида $\alpha \, x^{\, \beta}$ при $x \to 0$, если

$$f(x) = \frac{\arcsin(\sqrt{4 + x^2} - 2)}{3xe^x - 7\sqrt{tgx}}.$$

3. Исследовать непрерывность функции

$$f(x) = \begin{cases} \frac{1}{2^{\frac{1}{(1-x)}}}, & x \neq 1, \\ \frac{1}{2}, & x = 1. \end{cases}$$

4. Найти предел, пользуясь правилом Лопиталя

$$\lim_{x \to 0} \left(e^{2x} + e^{-2x} - 2 \right) ctg 2x.$$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 0} \frac{\ln^2(1+x) - \sin^2 x}{1 - e^{-x^3}}.$$

6. Определить, в каких точках и под каким углом пересекаются кривые y = x + 1 и $x^3 + y^3 - xy - 7 = 0$.

7. Выбрать α так, чтобы кривая $y = x^3 + \alpha x^2 + 1$ имела точку перегиба при x = 1. Указать интервалы различного направления выпуклости кривой.

8. Найти $d^n y$, если $y = (2 - x) \ln 2x$, $n \in N$.

9. Разложить по формуле Маклорена функцию

$$f(x) = \frac{x^2}{2 - x^2}$$
 до о (x^{2n}) .

10. Найти
$$y''_{xx}$$
, если
$$\begin{cases} x = t + 2t^2 + t^3, \\ y = -2 + 3t - t^3. \end{cases}$$

1. Вычислить

$$\lim_{x \to 1} \left(\frac{\cos 2\pi x}{2 + (e^{\sqrt{x-1}} - 1) \operatorname{arctg} \frac{x+2}{x-1}} - (2 - x)^{\sin \frac{\pi x}{2} / \ln(2-x)} \right).$$

2. Найти главную часть функции f(x) вида αx^{β} при $x \to 0$, если

$$f(x) = \frac{5\sqrt{1 + x\sin x} - 5}{tg\sqrt[4]{x} + \sqrt[3]{x} + \sin^2(\sqrt[5]{x})}.$$

3. Исследовать непрерывность функции

$$f(x) = \frac{1 - \cos x}{x^2}.$$

4. Найти предел, пользуясь правилом Лопиталя

$$\lim_{x \to 0} \frac{\sin 3x - 3x}{x^2 \arcsin 2x}$$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 0} \frac{\sin(\sin x) - x\sqrt[3]{1 - x^2}}{x^5}.$$

- 6. Написать уравнения нормали и касательной к графику функции $x^5 + y^5 2xy = 0$ в точке $M_0(1,1)$.
 - 7. Найти точки локального экстремума функции f(x) = x 2arctgx.
 - 8. Найти $f^{(n)}(x)$, если $f(x) = \sin 2x \sin 4x$.
 - 9. Разложить по формуле Маклорена функцию

$$f(x) = \ln \frac{1+x}{2+x}$$
 до $o(x^n)$.

10. Вычислить
$$d\left(\frac{(2x-1)\sqrt[3]{2+3x}}{(5x+4)^2\sqrt[4]{1-x}}\right)$$
 при $x=0$.

1. Вычислить

$$\lim_{n \to \infty} \left(\frac{(\sqrt{n^2 + 3n} - \sqrt{n^2 + 4})\sqrt{n}}{\sqrt{n} + 3} - \frac{n}{\sqrt[3]{n^3 - n^2 + 3} + \cos 3n} \right).$$

2. Найти главную часть функции f(x) вида αx^{β} при $x \to +\infty$, если

$$f(x) = \frac{\ln\left(1 + arctg^4 \frac{1}{3x^2 - x}\right)}{3x + \sin\sqrt{x}}.$$

3. Исследовать непрерывность функции

$$f(x) = (x+1)arctg \frac{1}{x}.$$

4. Найти предел, пользуясь правилом Лопиталя

$$\lim_{x \to \frac{\pi}{4}} (4x - \pi) \operatorname{ctg} 4x.$$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 0} \frac{\sqrt[4]{1 + 4sh^2x} - \sqrt[5]{1 + 5x^2}}{sh^4x}.$$

6. Найти точки, в которых касательные к графику функции

$$\begin{cases} x = \frac{t^3}{1+t^2}, \\ y = \frac{t^3 - 2t^2}{1+t^2}, \end{cases}$$

параллельны оси Ох.

7. Исследовать поведение функции $y = 2x + x^2 - (x+1)\ln(2+x)$ в окрестности точки $x_0 = -1$ с помощью производных внешних порядков.

8. Найти
$$f^{(n)}(x)$$
, если $f(x) = (x-1) 2^{x-1}$.

9. Разложить функцию
$$f(x) = \frac{2x-3}{x-1}$$
 по формуле Тейлора до $\mathrm{o}(x-2)^n$) .

10. Вычислить приближенно $\sqrt[3]{65}$ с помощью дифференциала.

Вариант 4

1. Вычислить
$$\lim_{n\to\infty} \left(\sin\sqrt{n^2 + 3n + 1} \ arctg \frac{n}{n^2 + 1} - \frac{\sqrt[3]{n^3 + 5} - \sqrt{3n^4 + 2}}{1 + 3 + 5 + \dots + (2n - 1)} \right).$$

2. Найти главную часть функции f(x) вида αx^{β} при $x \to 0$, если

$$f(x) = \frac{3tgx \sqrt{1 - \cos x}}{\sqrt[4]{tgx - \sin x}}.$$

3. Исследовать непрерывность функции

$$f(x) = \frac{1}{x} \ln \frac{1+x}{1-x}.$$

4. Найти предел, пользуясь правилом Лопиталя

$$\lim_{x \to 0} \frac{e^{\sin x} - e^x}{\sin 2x - 2x}.$$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 0} \frac{\sqrt[7]{1 + 7(e^x - 1)^2} - \sqrt[3]{1 + 3x^2}}{\sin^4 x}.$$

6. В каких точках и под каким углом пересекаются кривые

$$y = \frac{2}{3}x^5 - \frac{1}{9}x^3 \quad \text{if } x = 1?$$

7. Найти точки перегиба и исследовать направление выпуклости кривой

$$y = \frac{x^3}{x^2 - 3}.$$

8. Найти
$$f^{(101)}(10)$$
, если $f(x) = \frac{2x+3}{x-7}$.

- 9. Разложить функцию $f(x) = e^{2x} sh3x$ по формуле Маклорена до $o(x^n)$.
 - 10. Найти lpha и eta так, чтобы функция

$$f(x) = \begin{cases} (x+\alpha)e^{\beta x}, & x < 0, \\ \alpha x^2 + \beta x + 1, & x \ge 0, \end{cases}$$

была дифференцируема при x = 0.

Вариант 5

1. Вычислить

$$\lim_{x \to 5} \left(\frac{\sqrt{6-x} - 1}{3 - \sqrt{4+x}} + \sqrt{\frac{1 - \cos \pi x}{4 + (x-5)\sin \frac{x}{x-5}}} \right).$$

- 2. Найти главную часть функции f(x) вида αx^{β} при $x \to 0$, если $f(x) = 2^x - \cos x.$
 - 3. Исследовать непрерывность функции

$$f(x) = \begin{cases} \frac{1}{x+1}, & x < -1, \\ 1(x), & -1 \le x \le 1, \\ \frac{1+x}{1+x^2}, & x > 1. \end{cases}$$

4. Найти предел, пользуясь правилом Лопиталя

$$\lim_{x \to \pi/2} \left(x t g x - \frac{\pi}{2 \cos x} \right).$$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to +\infty} \left(e^{\frac{1}{x}} (x^2 - x + 2) - \sqrt{x^4 + x^2 + 1} \right).$$

6. Найти абсциссы точек на графике функции

$$y = 24x^3 + 3x^2 + 5,$$

в которых касательные параллельны прямой y = x.

7. Найти промежутки монотонности и точки экстремума функции

$$y = \frac{x^2 - 2x + 2}{x - 1}.$$

- 8. Найти $d^{25}y$, если $y = \ln(x-1)^{2x}$.
- 9. Найти разложение функции $f(x) = x \sin^2 2x$ по формуле Маклорена до $o(x^{2n+1})$.
- 10. Вычислить dy(x) при значении параметра, соответствующего точке (4,0), если

$$\begin{cases} x = (t-1)^{2} (t-2), \\ y = (t-1)^{2} (t-3). \end{cases}$$

Вариант 6

1. Вычислить

$$\lim_{x \to +\infty} \left(\frac{x^3}{x^2 + 2} + \frac{x^2 + x + 1}{3 - x} - 7 \sqrt{e^{tg^2 \frac{1}{x}} - 1} \right) \cos x + 5 \cos \frac{1}{x} \right).$$

- 2. Найти главную часть функции f(x) вида $\alpha \, x^{\beta}$ при $x \to 0$, если $f(x) = \frac{\sin(\sqrt{x+2} \sqrt{2})}{3^{\sqrt{x}} \cos x}.$
 - 3. Исследовать непрерывность функции

$$f(x) = \begin{cases} 2|x|, & |x| \le 1, \\ 4 - x^2, & |x| > 1. \end{cases}$$

4. Найти предел, пользуясь правилом Лопиталя

$$\lim_{x \to 5+0} \frac{\cos x \ln(x-5)}{\ln(e^x - e^5)}.$$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 0} \frac{e^{\sin x} - \sqrt{1 + x^2} - x \cos x}{\ln^3 (1 - x)}.$$

- 6. Написать уравнение касательных к кривой $y = x^2 3x + 2$ в точках ее пересечения с осью Ox.
 - 7. Определить асимптоты графика функции $y = \frac{3x^2 10}{\sqrt{4x^2 1}}$.
 - 8. Найти $f^{(n)}(x)$, если $f(x) = \ln(3x 7)$.
- 9. Найти разложение функции $f(x) = e^{x^2 + 8x + 5}$ по формуле Тейлора до $o((x+4)^{2n})$.
 - 10. Вычислить $f'_{+}(1)$ и $f'_{-}(1)$, если $f(x) = |x-1|e^{x}$.

1. Вычислить

$$\lim_{n \to +\infty} \left(\frac{n^2}{n^2 + 1} \right)^{\frac{n^2}{n+1}} - \sqrt{\sin \sqrt{n} \ arctg \frac{1}{n+3} + 25 \cos \frac{1}{n^2 + 4}} \right).$$

- 2. Найти главную часть функции f(x) вида αx^{β} при $x \to 0$, если $f(x) = e^{tgx} - e^{\sin x}.$
- 3. Исследовать непрерывность функции $f(x) = 1(x^2 + 5x - 14) + sign2x.$
- 4. Найти предел, пользуясь правилом Лопиталя $\lim_{x\to \frac{\pi}{8}} (tg2x)^{tg4x}.$
 - 5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 0} \frac{2x \cos x^2 - 2\sin x + \ln(1 + x^3)}{arctgx^3}$$

- 6. Написать уравнение касательных к графику функции $y = \sqrt{x}$, проходящих через точку $A\left(2, \frac{3}{2}\right)$.
 - 7. Исследовать поведение функции

$$f(x) = 6e^{x-1} - x^3 - 6x^2 - 15x - 16$$

в окрестности точки $x_0 = -1$ с помощью производных высших порядков.

- 8. Найти $f^{(58)}(0)$, если $f(x) = \sin^2 2x + \cos^2 4x$.
- 9. Найти разложение функции $f(x) = \ln(2 + x x^2)$ по формуле Тейлора до $o((x-1)^n)$.
 - 10. Вычислить y'_{x} , y''_{xx} , если

$$\begin{cases} x = \frac{t+1}{t}, \\ y = \frac{t-1}{t}. \end{cases}$$

Вариант 8

1. Вычислить

$$\lim_{x \to 4} \left(\frac{\sqrt{1 + 2x} - 3}{\sqrt{x} - 2} + \frac{\sin x^2 - \sin \pi x \ arctg \frac{4 + x}{4 - x}}{1 + \cos x} \right)$$

2. Найти главную часть функции f(x) вида αx^{β} при $x \to 0$, если

$$f(x) = \frac{arctg^2(\sqrt{9+x}-3)}{2^{\sin x} - \cos x}.$$

- 3. Исследовать непрерывность функции $f(x) = \frac{3x-1}{3x^2+5x-2}$.
 - 4. Найти предел, пользуясь правилом Лопиталя

$$\lim_{x \to +\infty} \left(4x + 8^x\right)^{1/x}.$$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 0} \frac{\sqrt{1+x} + \sqrt[3]{1+x} - 2\sqrt[4]{1-x}}{x^2 + \ln(1+2x)}.$$

6. Написать уравнения нормали и касательной к кривой
$$\begin{cases} x = \sqrt{2}\cos^3 t, \\ y = \sqrt{2}\sin^3 t \end{cases}$$
 в точке $M_0\left(\frac{1}{2},\frac{1}{2}\right)$.

- 7. Найти точки перегиба и исследовать направление выпуклости кривой $y = \frac{3x^4 + 1}{x^3}.$
 - 8. Найти $d^{40}y$, если $y = 2^{3x-7} + 3 \cdot x^{40} + \ln 4x$.
- 9. Найти разложение функции $f(x) = \sqrt{2x+3}$ по формуле Тейлора до $o((x-3)^n)$.
 - 10. Вычислить $\cos 5^{\circ}$ с точностью до 10^{-5} .

1. Вычислить
$$\lim_{n \to +\infty} \left(\frac{\cos \frac{1}{n} + arctg \frac{n^3}{n^2 + 1} \arcsin \frac{\pi}{n + 3}}{1 + e^{\frac{1}{n}}} + \frac{(n - 1)! + 3n!}{(n + 1)(n - 1)! - (n - 2)!} \right).$$

- 2. Найти главную часть функции f(x) вида $\alpha(x-1)^{\beta}$ при $x \to 1$, если

3. Исследовать непрерывность функции
$$f(x) = \begin{cases} \frac{1}{x}, & x \in (-\infty, 0), \\ 1+x, & x \in [0, 3), \\ (x-3)^2, & x \in [3, +\infty). \end{cases}$$

4. Найти предел, пользуясь правилом Лопиталя

$$\lim_{x \to 0} \frac{(2x+1)\ln(2x+1) - 2x}{e^x - x - 1}.$$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to +\infty} x^{\frac{3}{2}} (\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x}).$$

- 6. Провести касательную к гиперболе $y = \frac{x+9}{x+5}$ так, чтобы она прошла через начало координат.
- 7. Найти промежутки монотонности и точки экстремума функции $y = e^{-x} e^{-2x}$.
 - 8. Найти $f^{(24)}(0)$, если $f(x) = \frac{1}{\sqrt{3x+2}} + \sin^2 3x$.
- 9. Найти разложение функции $f(x) = \ln(3 + x^2)$ по формуле Маклорена до $o(x^{2n})$.
 - 10. Выяснить, дифференцируема ли функция f(x) = x |x|. Вариант 10
 - 1. Вычислить

$$\lim_{x \to +\infty} \left((3x+1)(\ln 2x - \ln(2x-1)) + \frac{\sqrt{x^2 + 3x - 2} + \sqrt[3]{2x^2 + 1}}{x + 4\sin^2 x} \right).$$

2. Найти главную часть функции f(x) вида αx^{β} при $x \to 0$, если $3 arctg \frac{1}{x^2} \sin 2x^3$

$$f(x) = \frac{3arctg\frac{1}{x^2}\sin 2x^3}{e^{\sqrt{x}} - 1}.$$

- 3. Исследовать непрерывность функции $f(x) = \begin{cases} \frac{1}{2^{\frac{1}{x}}}, & x < 0, \\ \frac{2^{\frac{1}{x}} 1}{x 1}, & x \ge 0. \end{cases}$
- 4. Найти предел, пользуясь правилом Лопиталя $\lim_{x \to \frac{\pi}{4}} (\pi 4x)^{\cos 2x}$.
 - 5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 0} \frac{x\sqrt{1 + \sin x} - \frac{1}{2}\ln(1 + x^2) - x}{tg^3x}.$$

- 6. Определить, в каких точках и под каким углом пересекаются кривые $y = x^2 - 4x + 4$ и $y = -x^2 + 6x - 4$.
 - $y = \frac{x^2 + 16}{\sqrt{9x^2 8}}.$ 7. Найти асимптоты графика функции
 - 8. Найти $d^{20}y$, если $y = (x \sin x)^2$.
- 9. Найти разложение функции $f(x) = \frac{1 + e^{3x}}{e^{x+3}}$ по формуле Маклорена до $o(x^n)$.
 - 10. Найти dy(x) в точке $M_0(1,0)$, если $arctg \frac{y}{x} = \ln \sqrt{x^2 + y^2}$.

1. Вычислить

$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} + \sqrt{\lg(x+2) + \sin\sqrt{1-x^2} \cos\frac{x+1}{x-1}} \right).$$

- 2. Найти главную часть функции f(x) вида $\alpha\,x^{\,eta}$ при x o 0 , если $f(x) = \ln\left(1 + 3^{\sin^2 x} - 3^{-tg^2 x}\right).$
 - 3. Исследовать непрерывность функции $f(x) = x \ signx$.
 - 4. Найти предел, пользуясь правилом Лопиталя

$$\lim_{x\to 2} \left(\frac{1}{arctg(x-2)} - \frac{1}{x-2} \right).$$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to +\infty} \left(x^4 \ln \frac{1+x^2}{x^2} - x^2 \right).$$

- 6. Написать уравнение нормали к эллипсу $3x^2 + 2xy + 2y^2 + 3x - 4y = 0$ в точке $M_0(-2,1)$.
- 7. Выбрать α так, чтобы кривая $y = e^x + \alpha x^2$ имела точку перегиба. Каково направление выпуклости кривой?
 - 8. Найти $f^{(17)}(x)$, если $f(x) = \frac{x}{x-1}$.
- $f(x) = 2^{-x+3}$ по формуле Тейлора до 9. Найти разложение функции $o((x-4)^n)$.
 - 10. Вычислить x, если $\sin x = 0.5011$.

$$\lim_{x \to +\infty} \left(\frac{(1+5^{-1}+5^{-2}+...+5^{-n})(2n+1)}{3n+2} + \frac{\cos\frac{1}{n}+\cos\sqrt{n}\,\sin\frac{1}{n}}{3-\ln\left(1+\arcsin\frac{1}{n+5}\right)} \right).$$

2. Найти главную часть функции f(x) вида $\alpha \, x^{\beta}$ при x o 0, если

$$f(x) = \frac{2xtg^2x(1-\cos 2x)}{\sqrt{1+x^2+x^3}-1}.$$

- 3. Исследовать непрерывность функции $f(x) = arctg \frac{1}{x^2}$.
- 4. Найти предел, пользуясь правилом Лопиталя $\lim ctg3x\ln(x+e^{3x})$. $x \rightarrow 0$

5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 1} \frac{2\sqrt{x} - \sin(x - 1) - 2\cos(x - 1)}{arctg(x - 1) - \ln x}.$$

6. Найти точки, в которых касательные к графику функции $y = (3 - x^2)e^x$ параллельны оси Ox .

- 7. Определить промежутки монотонности и точки экстремума функции $y = (x+1) \ln^2 (x+1)$.
 - 8. Найти $f^{(n)}(x)$, если $f(x) = \frac{1}{\sqrt{1-2x}}$.
- 9. Найти разложение функции $f(x) = x \cos x$ по формуле Тейлора до $o((x-\pi)^{2n+1})$.
 - 10. Найти $f_{+}^{'}(0)$ и $f_{-}^{'}(0)$, если $f(x) = x(1-x^2)signx$.

Вариант 13

$$\lim_{n \to +\infty} \left(\frac{n^2 - n + 1}{n^2 + n + 1} \right)^n + \frac{3 - \ln\left(1 + arctg\frac{1}{\sqrt{n}}\right)}{\cos\frac{1}{n} + \sin n^2 \sin\frac{1}{n^2}} \right).$$

2. Найти главную часть функции f(x) вида $\alpha \, x^{\beta}$ при $x \to 0$, если

$$f(x) = \frac{\sqrt[3]{x^2 - \sqrt{x^2}}}{3\arcsin\sqrt{\ln(1 + \sqrt{x})}}.$$

3. Исследовать непрерывность функции f(x) = sign x + 1(3-x).

- 4. Найти предел, пользуясь правилом Лопиталя $\lim_{x\to 0} \left(\frac{\sin 2x}{2x}\right)^{1/x^2}$.
- 5. Найти предел, используя формулу Тейлора $\lim_{x\to 1} \frac{\ln^2(1+x) \sin^2 x}{1 e^{-x^3}}$.
- 6. Написать уравнение касательной к графику функции

$$y = 4ctgx - \frac{\cos x}{\sin^2 x}$$
 при $x = \frac{\pi}{2}$.

- 7. Определить промежутки возрастания и убывания функции $f(x) = \frac{2x}{\ln x}$
- 8. Найти $f^{(n)}(x)$, если $f(x) = (3-2x)^2 e^{2-3x}$.
- 9. Найти разложение функции $f(x) = \ln(x+2)$ по формуле Тейлора до $\circ ((x-1)^n)$.
 - 10. Найти dy(x) при $t = \frac{\pi}{4}$, если $\begin{cases} x = t(t\cos t 2\sin t), \\ y = t(t\sin t + 2\cos t). \end{cases}$

$$\lim_{x \to 0} \left(\frac{2\sqrt{x^2 + x + 1} - 2 - x}{x^2} - \frac{\sqrt[3]{tgx} \ arctg \frac{1}{x} + 3}{2 - \ln(1 + \sin 7x)} \right).$$

- 2. Найти главную часть функции f(x) вида $\alpha(x-2)^{\beta}$ при $x \to 2$, если $f(x) = \frac{\sin(\arcsin(x-2)^5) 3tg^4(x-2)}{7^{2x-4} 1}.$
 - 3. Исследовать непрерывность функции $f(x) = \begin{cases} x, & x \le 0, \\ 1-x, & 0 < x \le 1, \\ \frac{1}{1-x}, & x > 1. \end{cases}$

4. Найти предел, пользуясь правилом Лопиталя
$$\lim_{x\to +\infty} \frac{\pi - 2arctgx}{e^{\frac{3}{x}}-1}$$
.

5. Найти предел, используя формулу Тейлора

$$\lim_{x\to\infty} \left(x^8 \cos \frac{2}{x^2} - x^8 + 2x^4 \right).$$

- 6. Написать уравнения касательной и нормали к кривой точке $M\left(1, \frac{3\sqrt{3}}{2}\right)$.
 - 7. Определить асимптоты графика функции $f(x) = \frac{x^3 + 3x^2 2x 2}{2 3x^2}$.
 - 8. Найти $d^{49}y$, если $y = 5sh2x + 4x^{50} + \ln 3x$
- 9. Найти разложение функции $f(x) = xe^{2x+3}$ по формуле Маклорена до $o(x^n).$
 - 10. Найти y'(x), если $y = (tg3x)^{2\sin 4x}$

$$\lim_{n\to\infty} \left(\frac{e^{\frac{1}{n}} + \sin\frac{n}{n^3+1}\cos\sqrt{n}}{1+\cos\frac{1}{n}} + \frac{(n+3)! + (n+2)!}{2n^2(n+1)! - (n+2)!} \right).$$

- 2. Найти главную часть функции f(x) вида $\alpha \, x^{\beta}$ при $x \to 0$, если $f(x) = (1 - x) \ln(1 + \sqrt{x \sin x}).$
 - 3. Исследовать непрерывность функции $f(x) = 1(\sin x)$.
 - 4. Найти предел, пользуясь правилом Лопиталя $\lim_{x \to +0} (ctg2x)^{\sin 2x}$
 - 5. Найти предел, используя формулу Тейлора

$$\lim_{x \to 0} \frac{\sqrt[5]{1 + 5\sin^2 x} - \sqrt[3]{1 + 3x^2}}{\sin^4 x}.$$

- 6. Написать уравнение нормали к кривой $y = \frac{x^3 + 2x^2}{(x-1)^2}$ при x = -2.
- 7. Найти точки перегиба и исследовать направление выпуклости кривой $y = x^4 (12 \ln x 7)$.
 - 8. Найти $f^{(15)}(x)$, если $f(x) = x^2 \ln 7x$.
- 9. Найти разложение функции $f(x) = \sqrt{x+4}$ по формуле Тейлора до о $((x+2)^n)$.
 - 10. Найти $f'_{+}(1)$ и $f'_{-}(1)$, если $f(x) = |2^{x} 2|$.

Контрольная работа

«Дифференциальное исчисление функции одной переменной»

- 1. Привести пример функции y=f(x), которая непрерывна для всех $x\in R$ и дифференцируема всюду, кроме точек $x_1, x_2\in R$, где x_1 число вашего рождения, x_2 порядковый номер месяца вашего рождения.
 - 2. Решить уравнение y'(x) = 0, где $y(x) = \frac{x^2 + x 6}{x^2 10x + 25}$.
- 3. Доказать или опровергнуть утверждение: если функция f(x) имеет, а q(x) не имеет производной в некоторой точке, то функция f(x) + q(x) не имеет производной в этой точке.
 - 4. Найти левую и правую производные функции f(x) в точке ее разрыва,

если
$$f(x) = \begin{cases} arctg(\frac{1}{x}), & ecлu \ x \neq 0, \\ -\frac{\pi}{2}, & ecлu \ x = 0. \end{cases}$$

- 5. Определить, в каких точках и под каким углом пересекаются кривые $f_1(x) = \sqrt{2}\sin x$, $f_2(x) = \sqrt{2}\cos x$.
 - 6. Найти $\lim_{x\to 0} \frac{e^x \sqrt{1 + 2x + 2x^2}}{x + tgx \sin 2x}$.
 - 7. Используя разложения функции по формуле Тейлора, найти

$$y^{(21)}(x_0)$$
, если $y = \log_3 \sqrt[3]{3x - \frac{1}{3}}$, $x_0 = 3$.

- 8. Доказать, что уравнение $4x^3 5x^2 + 7x 12 = 0$ имеет единственный действительный корень.
- 9. Каким условиям должны удовлетворять коэффициенты a,b,c, чтобы функция $y=ax^4+bx^3+cx^2+dx+e$ имела точки перегиба?
 - 10. Найти наибольшее и наименьшее значения функции

$$y = \begin{cases} -x^2, & x \le 0, \\ 2ex \ln x, & x > 0 \end{cases}$$
 на отрезке [-1; 2].

- 1. Привести пример функции y=f(x), которая непрерывна для всех $x\in R$ и дифференцируема всюду, кроме точек $x_1,x_2\in R$, где x_1 число вашего рождения, x_2 порядковый номер месяца вашего рождения.
 - 2. Решить уравнение y'(x) = 0, где $y(x) = \frac{1}{1 + \sin^2 x}$.
- 3. Доказать или опровергнуть следующее утверждение: если функции f(x) и q(x) не имеют производной в некоторой точке, то функция f(x) + q(x) не имеет производной в этой точке.
 - 4. Найти левую и правую производные функции f(x) в точке ее разрыва,

если
$$f(x) = \begin{cases} \frac{1}{1+e^{\frac{1}{x}}}, & ecли \ x \neq 0, \\ 0, & ecлu \ x = 0. \end{cases}$$

- 5. Определить, в каких точках и под каким углом пересекаются кривые $f_1(x) = \ln x$, $f_2(x) = \frac{x^2}{2e}$.
 - 6. Найти $\lim_{x\to 0} \frac{x^2 e^x \ln(1+x^2) \arcsin x^3}{x \sin x x^2}$.
- 7. Используя разложение функции по формуле Тейлора, найти $y^{(32)}(x_0)$, если $y=\ln(2+x-x^2)$, $x_0=1$.
- 8. Доказать, что уравнение $2x^3 3x^2 + 7x 4 = 0$ имеет единственный действительный корень.
- 9. При каких a кривая $y = x^4 + ax^3 + \frac{3}{2}x^2 + 1$ выпукла вниз для всех $x \in R$?
- 10. Найти наибольшее и наименьшее значения функции $y = (x-3)^3 e^{|x+1|}$ на отрезке [-2; 4].

- 1. Привести пример функции y=f(x), которая непрерывна для всех $x\in R$ и дифференцируема всюду, кроме точек $x_1,x_2\in R$, где x_1 число вашего рождения, x_2 порядковый номер месяца вашего рождения.
 - 2. Решить уравнение y'(x) = 0, где $y(x) = x(x-1)^2(x-2)^3$.

- 3. Доказать или опровергнуть следующее утверждение: если функция f(x) имеет, а функция q(x) не имеет производной в некоторой точке, то и функция f(x) q(x) не имеет производной в этой точке.
 - 4. Найти левую и правую производные функции f(x) в точке ее разрыва,

если
$$f(x) = \begin{cases} \frac{x}{|x|} (1 - x^2), & \textit{если } x \neq 0, \\ 1, & \textit{если } x = 0. \end{cases}$$

- 5. Определить, в каких точках и под каким углом пересекаются кривые $f_1(x) = x^2 4x + 4$, $f_2(x) = -x^2 + 6x 4$.
 - 6. Найти $\lim_{x\to 0} \frac{\arcsin x + 3\cos x 3\sqrt[3]{1+x}}{1+\ln(1+x)-e^x}$.
 7. Используя разложение функции по формуле Тейлора, найти
- 7. Используя разложение функции по формуле Тейлора, найти $y^{(23)}(x_0)$, если $y=\frac{x}{x+4}$, $x_0=10$.
- 8. Доказать, что уравнение $3x^3 2x^2 + 5x 7 = 0$ имеет единственный действительный корень.
- 9. При каких значениях параметра a функция $y = x^3 ax$ возрастает на всей числовой прямой?
- 10. Найти наибольшее и наименьшее значения функции $y = (x-3)^2 e^{|x|}$ на отрезке [-1; 4].

- 1. Привести пример функции y=f(x), которая непрерывна для всех $x\in R$ и дифференцируема всюду, кроме точек $x_1,x_2\in R$, где x_1 число вашего рождения, x_2 порядковый номер месяца вашего рождения.
 - 2. Решить уравнение y'(x) = 0, где $y(x) = \begin{vmatrix} 1 & 2 & 3 \\ x & 1 & 2 \\ x & x & 1 \end{vmatrix}$.
- 3. Доказать или опровергнуть следующее утверждение: если f(x) и q(x) не имеют производной в некоторой точке, то и функция f(x) q(x) не имеет производной в этой точке.
- 4. Найти левую и правую производные функции f(x) в точке разрыва, если $f(x) = (1-x^2)signx$.

- 5. Определить, в каких точках и под каким углом пересекаются кривые $f_1(x) = 4x^2 + 2x 8$, $f_2(x) = x^3 x + 10$.
 - 6. Найти $\lim_{x\to 0} \frac{x^2 e^{2x} + \ln(1-x^2)}{x\cos x \sin x}$.
- 7. Используя разложение функции по формуле Тейлора, найти $y^{(24)}(x_0)\,,\,\text{если}\ y=\frac{x^2+3x}{x+1}\,,\quad x_0=1\,.$
- x+1 8. Доказать, что уравнение $7x^3+2x^2+x-13=0$ имеет единственный действительный корень.
 - 9. При каких значениях параметра a функция

$$y = \frac{a^2 - 1}{3}x^3 + (a - 1)x^2 + 2x$$
 возрастает на всей числовой прямой?

10. Найти наибольшее и наименьшее значения функции $y = \frac{x^4 + 1}{x^2 + 1}$ на отрезке [-1; 1].

- 1. Привести пример функции y=f(x), которая непрерывна для всех $x\in R$ и дифференцируема всюду, кроме точек $x_1,x_2\in R$, где x_1 число Вашего рождения, x_2 порядковый номер месяца Вашего рождения.
 - 2. Решить уравнение y'(x) = 0, где $y(x) = \begin{vmatrix} x-1 & 2 & 3 \\ 4 & x-5 & 6 \\ 7 & 8 & x-9 \end{vmatrix}$.
- 3. Доказать или опровергнуть следующее утверждение: для того чтобы дифференцируемая функция $y(x), x \in (a,b)$, имела монотонную на интервале (a,b) производную, необходимо, чтобы y(x) была монотонна на интервавале (a,b).
 - 4. Найти $f'_{-}(0)$ и $f'_{+}(0)$, если $f(x) = \begin{cases} 1 + e^{\frac{1}{x}}, & ecnu \ x < 0, \\ \sqrt{1 + \sqrt[3]{x^4}}, & ecnu \ x \ge 0. \end{cases}$
- 5. Определить, в каких точках и под каким углом пересекаются кривые $x^2 + y^2 = 5$ и $y^2 = 4x$.

6. Найти
$$\lim_{x\to 0} \frac{\ln(1+x-\frac{1}{6}x^2)-shx+\frac{2}{3}x^2}{\sin 2x-2x\cos x}$$
.
7. Используя разложение функции по формуле Тейлора, найти

- 7. Используя разложение функции по формуле Тейлора, найти $y^{(25)}(x_0)$, если $y=(x+3)e^{3x^2+18x}$, $x_0=-3$.
- 8. Доказать, что уравнение $5x^3 x^2 + 6x + 4 = 0$ имеет единственный действительный корень.
- 9. При каких значениях параметра a функция $y = ax \sin x$ возрастает на всей числовой прямой?
 - 10. Найти наибольшее и наименьшее значения функции

$$y = 2arctgx + \arcsin\frac{2x}{x^2 + 1}, \quad x \in R.$$

- 1. Привести пример функции y=f(x), которая непрерывна для всех $x\in R$ и дифференцируема всюду, кроме точек $x_1,x_2\in R$, где x_1 число вашего рождения, x_2 порядковый номер месяца вашего рождения.
 - 2. Решить уравнение y'(x) = 0, где $y(x) = \begin{vmatrix} x & 1 & 0 \\ x^2 & 2x & 2 \\ x^3 & 3x^2 & 6x \end{vmatrix}$.
- 3. Доказать или опровергнуть следующее утверждение: для того чтобы дифференцируемая функция y(x), $x \in (a,b)$, имела монотонную на интервале (a,b) производную, достаточно, чтобы y(x) была монотонна на интервале (a,b).

4. Найти
$$f'_{-}(0)$$
 и $f'_{+}(0)$, если $f(x) = \begin{cases} 2x, & ecnu \ x < 0, \\ \ln\left(1 + \sqrt[5]{x^7}\right), & ecnu \ x \ge 0. \end{cases}$

- 5. Определить, в каких точках и под каким углом пересекаются кривые $y^2 = 2x^3$ и 64x 48y 11 = 0.
 - 6. Найти $\lim_{x\to 0} \frac{e^{2x} ch2x 2x}{tg2x 2\sin x}$.
- 7. Используя разложение функции по формуле Тейлора, найти $y^{(26)}(x_0)$, если $y=2^{x-x^2}$, $x_0=\frac{1}{2}$.

- 8. Доказать, что уравнение $2x^3 3x^2 + 10x + 11 = 0$ имеет единственный действительный корень.
- 9. При каких значениях параметра a функция $y = ax + 3\sin x + 4\cos x$ возрастает на всей числовой прямой?
- 10. Найти наибольшее и наименьшее значения функции $y = (x-3)e^{|x+1|}$ на отрезке [-2; 4].

- 1. Привести пример функции y=f(x), которая непрерывна для всех $x\in R$ и дифференцируема всюду, кроме точек $x_1,x_2\in R$, где x_1 число вашего рождения, x_2 порядковый номер месяца вашего рождения.
 - 2. Решить уравнение y'(x) = 0, где $y(x) = e^{-|x-1|}/(x+1)$.
- 3. Доказать или опровергнуть следующее утверждение: для того чтобы дифференцируемая функция имела периодическую производную, необходимо, чтобы функция была периодической.
 - 4. Найти $f'_{-}(0)$ и $f'_{+}(0)$, если $f(x) = \begin{cases} x, & ecлu \ x \leq 0, \\ \sqrt[3]{x^4} \ln x, & ecлu \ x > 0. \end{cases}$
- 5. Определить, в каких точках и под каким углом пересекаются кривые $x^3 + y^3 xy 7 = 0$ и y = x + 1.
 - 6. Найти $\lim_{x\to 0} \frac{e^x \sqrt[3]{1 + 3x + \frac{9}{2}x^2}}{x^3}$.
- 7. Используя разложение функции по формуле Тейлора, найти $y^{(28)}(x_0)$, если $y = \left(x + \frac{\pi}{4}\right)(\sin x + \cos x)$, $x_0 = -\frac{\pi}{4}$.
- 8. Доказать, что уравнение $x^3 4x^2 + 8x 27 = 0$ имеет единственный действительный корень.
- 9. При каких значениях параметра a функция $y = (8a 7)x a\sin 6x \sin 5x$

возрастает на всей числовой прямой?

10. Найти наибольшее и наименьшее значения функции $y = \left| x^2 + 2x - 3 \right| + 1,5 \ln x$ на отрезке $\left[\frac{1}{2}; \ 2 \right]$.

Учебное издание

КОНТРОЛЬНЫЕ РАБОТЫ

по разделам высшей математики «Введение в анализ» и «Дифференциальное исчисление функций одной переменной» для студентов всех специальностей БГУИР дневной формы обучения

Составители: Феденя Ольга Александровна Черняк Жанна Альбертовна

Редактор Н.А. Бебель Корректор Е.Н. Батурчик

 Подписано в печать
 Формат 60х84 1/16.

 Бумага писчая
 Печать офсетная.
 Усл.печ.л.

 Уч.-изд.л. 2,8
 Тираж 200 экз.
 Заказ

Издатель и полиграфическое исполнение Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»
Лицензия ЛП №156 от 05.02.2001
Лицензия ЛВ №509 от 03.08.2001
220013 Минск, П. Бровки, 6