Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронных вычислительных машин

И.П. Кобяк

ПРОЦЕССОРЫ КОМПЬЮТЕРНЫХ СИСТЕМ. СИНТЕЗ ОПЕРАЦИОННЫХ АВТОМАТОВ

Методическое пособие

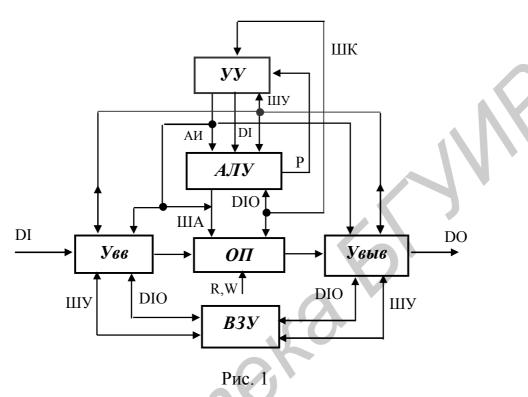
по курсовому и дипломному проектированию по ТиП ЭВМ и СиФО ЭВМ для студентов специальности 40 02 01 «Вычислительные машины, системы и сети» дневной формы обучения

Рецент: доцент кафедры ЭВМ БГУИР, канд. техн. наук Ю.А. Луцик

Кобяк И.П.

К 55 Процессоры компьютерных систем. Синтез операционных автоматов: Метод. пособие по курсовому и дипломному проектированию по ТиП ЭВМ и СиФО ЭВМ для студентов специальности 40 02 01 «Вычислительные машины, системы и сети» дневной формы обучения / И.П. Кобяк. – Мн.: БГУИР, 2003. – 83 с.: ил.

ISBN 985-444-470-8.


Методическое пособие предназначено для ознакомления студентов с принципами проектирования операционных автоматов, а также с системными вопросами организации процессоров и блоков обработки данных. В пособии рассматриваются МПК К1804 и принципы использования комплекта при построении БОД, вопросы синтеза операционных автоматов и примеры применения методик для построения конкретных устройств. Представленные материалы могут быть использованы студентами для самостоятельного выполнения курсовых и дипломных проектов, а также для подготовки к экзамену по профилирующей специальности.

УДК 681.3 (075.8) ББК 32.973-04 я 73

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Принцип действия ЭВМ

Классическая структура компьютера содержит в своем составе следующие блоки:

Структурные компоненты приведенной системы имеют следующее функциональное назначение.

Арифметико-логическое устройство (АЛУ) предназначено для выполнения арифметических и логических операций над числами, представленными в формате с ПЗ или ФЗ. Кроме данных в АЛУ могут обрабатываться адреса (адресная информация), команды (например, преобразование форматов), признаки результатов и другая двоичная информация.

Устройство управления (УУ) предназначено для автоматического управления вычислительным процессом путем посылки всем блока компьютера сигналов, предписывающих те или иные действия. В частности, УУ всегда указывает на:

- 1) источники информации для АЛУ;
- 2) функцию, выполняемую АЛУ;

3) приемник результатов, полученных при обработке данных.

ОП и ВЗУ – это память ЭВМ – предназначена для хранения информации, поступающей в компьютер извне, информации, выводимой на внешние носители (печать, монитор и т. д.). Эти блоки также предназначены для хранения программ, результатов промежуточных расчетов и другой машинной информации.

Оперативная память (ОП) состоит из определенного число ячеек, каждая из которых предназначена для хранения машинного слова. Основными характеристиками ОП считают время обращения и емкость памяти. При этом под временем обращения понимают время, необходимое для записи или считывания единицы информации из любой ячейки.

Устройство ввода (Увв) обеспечивает считывание информации с внешних носителей и представление ее в форме электрических сигналов.

Устройство вывода (Увыв) преобразует кодовую информацию, поступающую из памяти или других блоков машины, в форму, необходимую для обмена с внешней средой.

На рис.1 изображены следующие шины: DIO — двунаправленная шина данных, ШУ — шина управления, ША — шина адреса, DI — входные данные, DO — выходные данные, АИ — адресная информация, R, W — сигналы чтения\записи.

Другой вариант схемы предполагает представление компьютера в виде трехшинной модели (рис. 2).

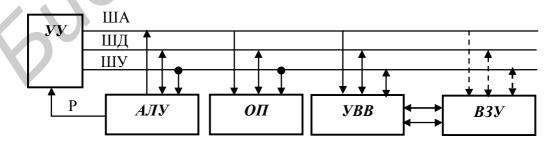


Рис. 2

Время обращения к ОП (или ОЗУ – оперативное запоминающее устройство) в задачах системотехники называют циклом обращения к памяти.

Непосредственно в вычислительном процессе участвует только ОП. Внешнее ЗУ (ВЗУ) служит для хранения больших массивов информации и обмена данными с ОП на различных этапах вычислений.

В общем случае для решения задачи на компьютере пользователь должен задать алгоритм ее решения в виде программы. При этом под алгоритмом понимают последовательность действий, которые необходимо выполнить (над данными) для получения решения задачи. В результате программа машины может интерпретироваться как алгоритм, представленный в терминах системы команд компьютера.

1.2. Неймановские принципы программного управления

Принципы Джона фон Неймана, предложенные в 1945 г., используются в качестве основных для построения большинства современных цифровых компьютеров.

Главная неймановская идея заключается в реализации на некоторых аппаратных носителях принципа хранимой программы, представленной двоичными кодами, различающимися по способу использования в вычислительном устройстве.

Рассмотрим 5 основных принципов организации вычислений, предложенных Джоном фон Нейманом, на начальных этапах создания вычислительной техники.

Первый принцип — использование двоичной системы счисления в качестве базовой. В соответствии с данным принципом обрабатываемая и управляющая информация кодируется двоичной системой счисления и разделяется на блоки, называемые машинными словами.

Использование двоичной системы определяется следующими преимуществами:

- 1. Числовая информация в ЭВМ отождествляет состояние физических элементов, применяемых в устройствах или блоках машины для хранения и преобразования данных. Причем простота управления переключением этих схем очевидна.
- 2. Выполнение арифметических и логических операций в компьютере базируется на известных законах булевой алгебры. Наработка этих законов и простота реализации вычислений в двоичной системе общеизвестны и ведут отсчет еще с позапрошлого века.
 - 3. Система счисления с основанием, равным двум, близка к оптимальной.
- 4. В литературе имеются исследования, доказывающие, что двоичная система имеет быстродействие примерно на 26% большее, чем любая другая. И вообще, из всех систем счисления двоичная система самая быстродействующая.
- 5. Аппаратура и информация, использующие двоичное кодирование, имеют наибольшую помехозащищенность.

В общем случае, если задачу выбора системы счисления обосновать с точки зрения организации живой материи, то можно сделать аналогичный вывод. Это следует из того, что процесс деления клетки — основного элемента организованной материи — имеет явно выраженную двоичную зависимость. Причем мощность этого процесса столь велика, что определяет воспроизводство всего живого на Земле.

2-й принцип. Информационные слова, циркулирующие в компьютере, различаются по способу использования, но не способом кодирования, т.е. согласно принципу хранимой программы, команды закодированы и хранятся в памяти в виде кодов наравне с данными. Это позволяет каждую команду использовать в программе многократно и, кроме того, над командами, как и над данными, выполнять различные преобразования, т.е. при необходимости модифицировать команды.

3-й принцип. Машинные слова размещаются в ячейках памяти в виде двоичных кодов и идентифицируются номерами, называемыми адресами памяти. Как правило, в качестве машинной памяти используются схемы ЗУ с произвольной выборкой. Создание более эффективных систем (например, ассоциативной памяти) позволяет реализовать безадресные обращения, что в общем случае свойственно памяти человека. Однако стоимость проектирования таких схем существенно велика, хотя при наличии отлаженных технологий процесс создания встроенных специальных ЗУ используется достаточно часто.

4-й принцип заключается в организации программного управления работой машины. Данный принцип предполагает, что алгоритм решения задачи состоит из отдельных команд, каждая из которых предписывает определенные действия. Команда включает в свой состав определенное число разрядов, кодирующих: 1) выполняемую операцию, 2) адреса источников операндов, 3) приемники результата и другую информацию. Например:

КОП А1	A2	A3	
--------	----	----	--

5-й принцип — принцип последовательной отработки команд. В процессе выполнения программы порядок исполнения команд определяется алгоритмом решаемой задачи. Первой выполняется команда, заданная начальным адресом. Адрес очередной команды определяется в процессе выполнения текущей. Данный принцип нарушается, если компьютер имеет архитектуру, отличную от неймановской, т.е. имеется, например, возможность параллельного исполнения команд в процессоре с несколькими АЛУ и т.д. Таким образом, в процессе проектирования компьютеров, как правило, осуществляется синтез неймановских архитектур. Однако в спецсистемах, предназначенных для быстрых вычислений, при введении различных форм параллелизма возможно нарушение 3-го и 5-го принципов.

Нарушение других принципов, очевидно, приведет к созданию вычислительных устройств, функционирующих на других физических основах.

Основными характеристиками компьютеров считаются:

1. Производительность, т.е. скорость выполнения контрольных или измерительных смесей команд. В общем случае для определения производительности используют смеси двух типов, а именно синтетические (или полусинтетические) и профильные.

Синтетические смеси представляют собой отобранные специальным образом процедуры с наибольшим удельным весом команд, соответствующих данному классу задач.

Профильные смеси представляют собой набор фрагментов реальных программ, работающих в единой операционной среде. Они используются для определения производительности компьютеров на проблемно-ориентированных задачах.

2. Стоимость – это показатель, включающий в себя расходы на эксплуатацию и обслуживание компьютера.

На практике указанные две характеристики могут быть использованы для построения диаграмм вида стоимость/производительность. Эти диаграммы при покупке вычислительной техники позволяют выбрать оптимальный или квазиоптимальный для данного класса задач вариант системы. Следует, однако, помнить, что индекс стоимость/производительность не включают в свой состав расходы на покупку компьютера. Это обусловлено тем, что основное назначение данного показателя заключается в определении эффективности эксплуатации новой техники, а не ее покупки.

- 3. Число разрядов в машинном слове определяет точность представления данных и результатов (измеряется в битах).
- 4. Скорость выполнения основных видов команд, т.е. преобразований типа «регистр-регистр», «регистр-память» и т.д. (измеряется в оп/с).
 - 5. Емкость оперативной памяти (измеряется в мегабайтах).
- 6. Скорость обмена между ядром ЭВМ и периферийным оборудованием, где под ядром понимают схемы процессора и памяти и их линии связей.

2. ПРОЦЕССОРЫ

Процессор занимает центральное место в структуре компьютера. Он предназначен для реализации процессов, связанных с обработкой цифровой информации, а также для управления взаимодействием узлов и блоков, входящих в состав вычислительного устройства. Укрупненно структура процессора может быть представлена в виде композиции операционного и управляющего автоматов (рис. 3).

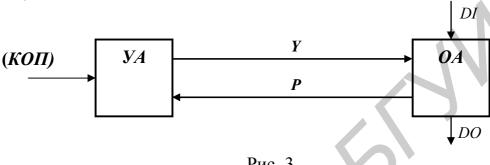


Рис. 3

При этом управляющий автомат может быть построен по схеме с жесткой логикой (автомат Мили или Мура) или спроектирован в виде микропрограммного УУ с хранимой логикой (схема Уилкса или ее модификации). Операционный автомат (ОА) используется для преобразования данных и включает в свой состав регистры, элементы управляющей логики, сумматоры, сдвигатели и другие функциональные узлы.

Вычислительный процесс инициируется кодом операции каждой выполняемой команды. Он преобразуется управляющим автоматом в последовательность сигналов, подаваемых на вход ОА, т.е. задает временную диаграмму пересылки и преобразования операндов.

По результатам выполненной команды ОА процессора формирует ряд признаков, используемых для ветвления исполняемого алгоритма.

2.1. Микропроцессорная секция К1804ВС1

Четырехразрядная микропроцессорная секция К1804ВС1 предназначена для построения операционных блоков цифровых устройств с разрядностью,

кратной 4. На структурной схеме $M\Pi C$ условно выделяют четыре крупных блока (рис. 4): 1) $BB\Pi$ — блок внутренней памяти; 2) $A\Pi B$ — арифметико-логический блок; 3) блок регистра Q; 4) BY — блок управления.

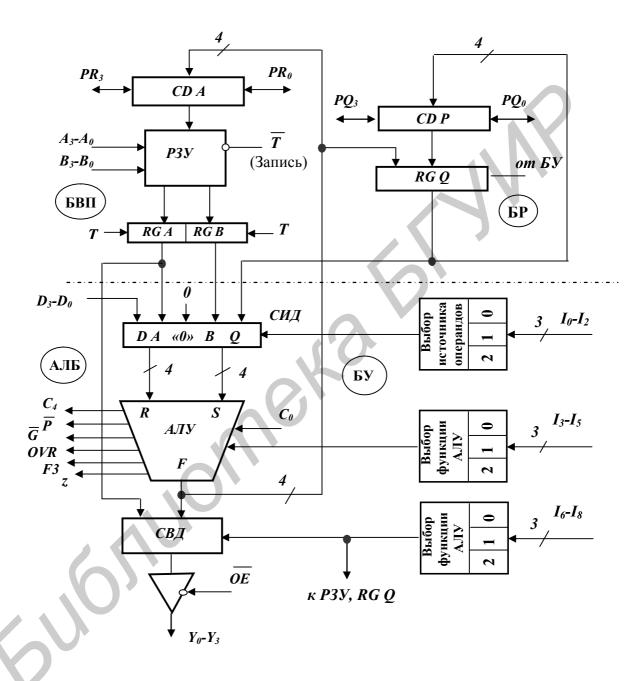


Рис. 4

Блок внутренней памяти содержит в своем составе регистровое 3V с двумя независимыми каналами выбора информации — канал адреса A и канал адреса B. На входе P3V включен сдвигатель A (CD A), позволяющий записывать в 3V

информацию как без сдвига, так и со сдвигом вправо или влево на один разряд. Запись в P3V возможна только по адресу, указанному на линиях канала B.

Регистры $RG\ A$ и $RG\ B$, установленные на выходах P3V, представляют собой 4-разрядные устройства с синхронной записью информации.

Выбор из $BB\Pi$ любого POH в качестве источника информации осуществляется путем подачи на входы A и B адресной информации без программирования каких-либо других управляющих сигналов. Из P3V одновременно могут быть считаны два операнда. При этом, если на входах A и B установлены одинаковые адреса (выполняется обращение к одному и тому же POH), то на обоих выходах P3V появляются идентичные данные.

Запись данных в P3V выполняется только по каналу B, при этом адрес по каналу A игнорируется. Моментом начала записи в P3V является момент перехода тактового импульса из состояния «1» в состояние «0».

Информация перед записью может быть сдвинута влево или вправо на один разряд. Эту операцию выполняет сдвигатель данных $CD\ A$, управляемый сигналами с дешифратора приемника результата. Схема $CD\ A$ имеет следующую структуру:

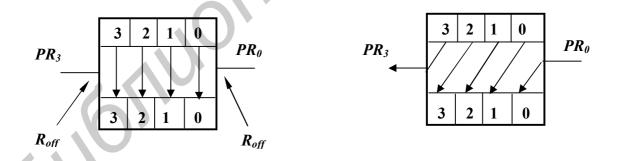


Рис. 5

Арифметико-логический блок включает в свой состав двухвходовое АЛУ, выполняющее 8 арифметических и логических операций и формирующее 4 признака результата:

 $C_{_{4}}$ — перенос из старшего разряда результата;

OVR – переполнение; OVR = 1, если $C_4 \oplus C_3 = 1$;

 F_3 – знак числа или значения старшего разряда на выходе AJV;

z — признак нулевого результата.

С выхода AЛУ информация подается на первый вход селектора выходных данных (CBД). На второй вход селектора данные передаются прямо с выхода $RG\ A$, минуя AЛУ. С выхода CBД информация через управляемые усилители передается на выходную шину $M\Pi C$ – трехстабильную шину Y.

Управление работой АЛБ осуществляется с помощью табл. 1,2,3.

Таблица 1

Таблица 2

	Mı	икро	код	Источник операндов <i>АЛУ</i>				
I_2	I_1	I_0	<i>8</i> -рич.	R	S			
0	0	0	0	A	Q			
0	0	1	1	A	$Q \\ B$			
0	1	0	2	0	Q			
0	1	1	3	0	B			
1	0	0	4	0	A			
1	0	1	4 5	D	A			
1	1	0	6	D	Q			
1	1	1	7	D	$Q \\ 0$			

Мин	срокс	ЭД	Операция
I_5 I_4	I_3	<i>8</i> -рич.	АЛУ
0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1	0 1 0 1 0 1 0	0 1 2 3 4 5 6	$R+S+C_0$ $S-R-I+C_0$ $R-S-I+C_0$ $R \lor S$ $\overline{R} \land S$ $\overline{R} \land S$ $\overline{R} \Leftrightarrow S$ $\overline{R} \oplus S$

Селектор источников данных выбирает операнды для R и S входов AЛУ. Причем выбор источников операндов осуществляется сигналами микрокоманды $I_2 - I_0$ (см. табл. 1), приемника результата — сигналами $I_8 - I_6$ (см. табл. 3), а функции AЛУ — сигналами $I_5 - I_3$ (см. табл. 2).

Арифметические операции в AJIV выполняются с учетом значения сигнала входного переноса C_0 и по правилам дополнительного кода при представлении отрицательных чисел. Это, в частности, означает, что если оба операнда нулевые и выполняется вычитание при $C_0 = 0$, на выходе устанавливается значение 1111, обозначающее в дополнительном коде число -1. При $C_0 = 1$ на выходе

]	Микр	окод	Į	I	P3 <i>Y</i>	RG	Q	Выход
I_8	I_7	I_6	8- рич.	Сдвиг	Загрузка	Сдвиг	Загрузка	Y
0	0	0	0	_	_	_	$F \rightarrow Q$	F
0	0	1	1	_	_	_	_	F
0	1	1	2	_	$F \rightarrow B$	_	_	A
0	1	1	3	_	$F \rightarrow B$	_	_	F
0	1	0	4	Вправо	$F/2 \rightarrow B$	Вправо	$Q/2 \rightarrow Q$	F
1	0	1	5	Вправо	$F/2 \rightarrow B$	_	_	F
0	0	1	6	Влево	$2F \rightarrow B$	Влево	$2Q \rightarrow Q$	F
1	1	1	7	Влево	$2F \rightarrow B$	_	-	F

AЛУ формируется значение 0000.

Выводы \overline{P} , \overline{G} $A \Pi Y$ позволяют с помощью внешних схем организовать между секциями ускоренный перенос при комплексировании их в блок с разрядностью, кратной четырем.

Сигналы признаков, формируемые АЛУ, используются следующим образом.

Вывод F_3 – старший разряд AЛУ – может быть использован, например, для определения знака арифметической операции. При этом отсутствует необходимость отпирания трехстабильной выходной шины данных, что упрощает выполнение команд перехода в мультипроцессорных системах. При соединении нескольких МПС знаком является вывод F_3 старшей секции. Выводы F_3 остальных секций не используются.

Выход z выполнен по схеме с открытым коллектором, и при объединении нескольких МПС все выводы z соединяются в общей точке, подключаемой через резистор к источнику питания. Потенциал этой точки имеет высокий уровень, если все выходы AЛУ одновременно нулевые.

Блок регистра Q состоит из дополнительного регистра $RG\ Q$ и сдвигателя $CD\ P$. Сдвигатель данных позволяет перезаписывать информацию в $RG\ Q$ как

без сдвига, так и со сдвигом влево или вправо на один разряд. Запись данных в $RG\ Q$ выполняется по положительному фронту сигнала синхроимпульса.

Блок управления формирует управляющие сигналы для остальных блоков $M\Pi C$. Входами данной подсхемы является шина микрокоманды I_8 — I_0 , которую условно можно разделить на три части. Блок управления соответственно также может быть представлен в виде совокупности трех частей, причем первая — вырабатывает сигналы управления для $CU\mathcal{I}$, вторая — используется для управления функцией $A\Pi V$, а третья — для управления $CB\mathcal{I}$, RGQ, CDP, CDA.

Инверсный сигнал \overline{OE} предназначен для управления *Y*-выходами *МПС*. При $\overline{OE}=0$ разрешается вывод информации через *Y*-выходы на \overline{III} Д, если $\overline{OE}=1$, выходная шина отключается (переводится в состояние R_{off}).

2.2. Микропроцессорная секция К1804ВС2

По отношению к предыдущей разработке процессорная секция *К1804ВС2* имеет ряд усовершенствований (рис. 6):

во-первых, $A \Pi Y$ микропроцессора выполняет арифметические, логические и специальные функции;

во-вторых, сдвигатель данных $A \Pi Y CDA$ выполняет как логические, так и арифметические сдвиги;

в-третьих, в микропроцессоре заложена возможность внешнего расширения P3V путем подсоединения любого числа дополнительных рабочих регистров, обращение к которым возможно в различных режимах адресации.

В целом микропроцессорная секция состоит из 4 основных блоков: блока внутренней памяти (EBII), арифметико-логического блока (AJIE), блока рабочего регистра (EP) и блока управления (EV).

<u>Блок внутренней памяти</u> включает в свой состав шестнадцать 4-разрядных POH, объединенных в P3V, а также регистр A и регистр B с трехстабильным выходом. Информация, размещаемая в регистрах, адресуется по каналам адреса $A_3 - A_0$ и $B_3 - B_0$ P3V соответственно.

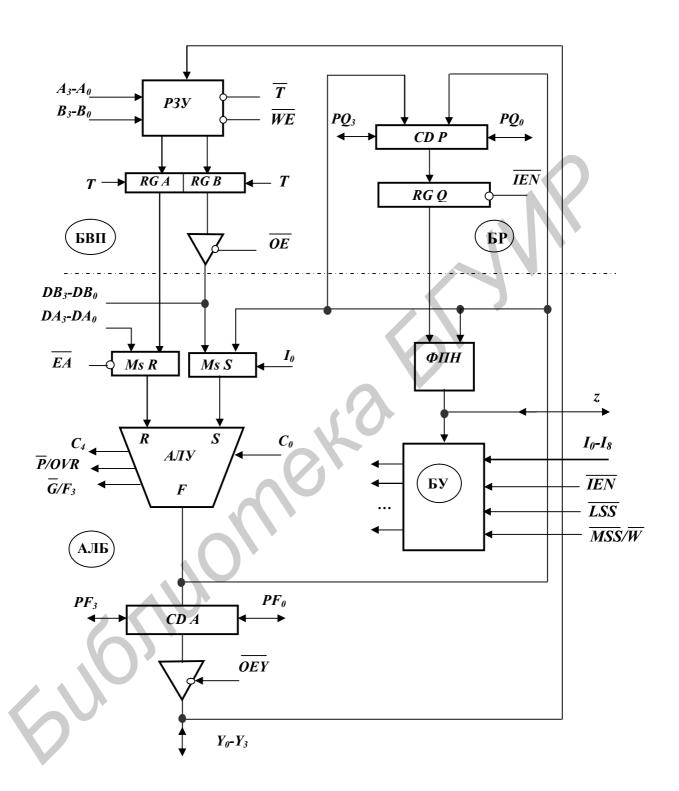


Рис. 6

Управление выходом регистра B осуществляется сигналом \overline{OE} , что позволяет передавать данные с выхода \overline{BBH} на вход мультиплексора \overline{MsS} AJY и на входы $\overline{DB_3}$ - $\overline{DB_0}$ \overline{MHC} при $\overline{OE}=0$, кроме того, при $\overline{OE}=1$ имеется возможность вводить информацию со входов $\overline{DB_3}$ - $\overline{DB_0}$.

Каждый из POHов может быть выбран в качестве источника или приемника полученного результата. При этом информация с выходов P3V записывается в RG A или RG B при наличии уровня логической единицы на входе T, в частности, если T=0, то регистры находятся в режиме хранения.

Запись информации в P3V может производиться только по адресу B. При этом необходимо, чтобы на входах \overline{WE} и \overline{T} был установлен логический « θ ». Подача на входы \overline{WE} или \overline{T} единичного потенциала запрещает режим записи. Считывание информации из P3V может производиться одновременно по адресам A и B. Если на входах A и B установлены одинаковые адреса, то на выходы P3V считывается одинаковая информация.

 $M\Pi C$ может функционировать в режиме двухадресной (B=A+B) и трехадресной (Q=A+B) обработки данных. В двухадресном режиме на входы A_3-A_0 подается адрес операнда R, а на входы B_3-B_0 — адрес операнда S и результата. В трехадресном режиме приемником результата служит дополнительный регистр Q, адресуемый в микрокоманде неявно.

<u>Арифметико-логический блок</u> состоит из двух мультиплексоров MsS и MsR, арифметико-логического устройства, сдвигателя данных CDA с трехстабильным выходом (рис. 7), формирователя признака нуля $\Phi\Pi H$, используемого при выполнении арифметических, логических и специальных функций, а также при формировании сигналов состояния $M\Pi C$.

Входные мультиплексоры осуществляют выбор источников операндов R и S под действием управляющих сигналов \overline{EA} , \overline{OE} , I_0 в соответствии с табл. 4. Из таблицы следует, что, если I_0 =1, то параллельно с выполнением операции в $A\Pi V$ возможен вывод данных из P3V по шине DB_3 – DB_0 во внешнюю память.

Таблииа 4

\overline{EA}	I_0	\overline{OE}_1	R	S
0	0	0	A	В
0	0	1	A	DB
0	1	0	A	Q
0	1	1	A	Q
1	0	0	DA	В
1	0	1	DA	DB
1	1	0	DA	Q
1	1	1	DA	Q

Арифметико-логическое устройство обеспечивает выполнение семи арифметических, девяти логических операций, а также девяти специальных функций. Выбор операции AJV осуществляется под действием поля регистра микрокоманды I_8-I_0 , причем если разряды I_4-I_0 имеют значение 00000, то AJY выполняет специальные функции.

Выводы $\overline{P},\overline{G}$ *МПС* используются для организации ускоренного переноса в многоразрядных процессорах. Причем выходы $\overline{P},\overline{G}$ *Ст.МПС* не используются, а выходы F_3 , OVR — наоборот, используются только у Cm.MПC. Этот факт позволяет объединить выводы \overline{G} и F_3 , а также \overline{P} и OVR и соответственно уменьшить общее число контактов интегральной микросхемы.

Данные с выхода AЛУ могут быть переданы на входы сдвигателя CD P регистра Q и на входы сдвигателя CD A, соединенного с выходами F AЛУ. Таким образом, выходная информация может записываться в P3V и выводиться на шину Y_3 - Y_0 как без сдвига, так и со сдвигом влево или вправо на один разряд.

Отличительной особенностью CDA AЛУ является процесс выполнения арифметических сдвигов. Схема сдвигателя для старшей $M\Pi C$ процессора при сдвиге влево или вправо на 1 разряд в этом случае имеет вид, показанный на рис. 7.

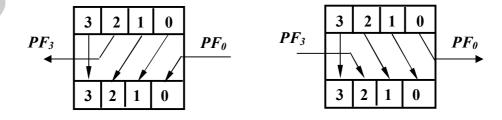


Рис. 7

Выполнение сдвиговых операций в процессоре K1804BC2 осуществляется под управлением сигналов микрокоманды I_8-I_5 , при этом сигнал $\overline{IEN}=0$, сигналы микрокоманды $I_0 \vee I_1 \vee I_2 \vee I_3 \vee I_4=1$ (табл. 5).

Таблица 5

		•					
Код мик-				Выходн	ые сигна	лы	
рокоман- ды				$\overline{P/C}$	VR	\overline{G}	
ДЫ	Операция АЛУ	_	C_4		Мл. и		Мл. и
$I_4I_3I_2I_1I_0$		Z	C4	Ст. МПС	Ср. МПС	Ст. МПС	<i>Ср.</i> <i>МПС</i>
00000		Ci	пециалы	ные функ	сции		
00001	F _{AJIV} :=«1111»	0	0	0	0		
0001x	$S-R-1+C_0$						
0010x	$R-S-1+C_0$						
0011x	$R+S+C_0$						
0100x	$S+C_0$	Z	C_4	OVR	\bar{P}		
0101x	$\overline{S}+C_0$						
0110x	$\underline{R} + C_0$						
0111x	$\overline{R}+C_{\theta}$			U'		E	\overline{G}
1000x	F_{AJIY} :=« 0000 »	1	0	0	0	F_3	G
1001x	$\overline{R} \wedge S$						
1010x	$\overline{R} \oplus S$						
1011x	R⊕S						
1100x	$\overline{R \wedge S}$	Z	0	0	0		
1101x	$\overline{R \vee S}$						
1110x	$R \wedge S$						
1111x	$R \vee S$						

Функционирование $M\Pi C$ при выполнении некоторых операций зависит от ее положения в системе, поэтому при соединении секций необходимо выполнить их настройку на заданное положение: $Cm.M\Pi C$, $Cp.M\Pi C$, $Mn.M\Pi C$. Такая настройка выполняется при помощи выводов \overline{LSS} и $\overline{MSS}/\overline{W}$. В младшей $M\Pi C$ на входе \overline{LSS} устанавливается «0», при этом линия $\overline{MSS}/\overline{W}$ становится выходом \overline{W} , причем необходимо, чтобы \overline{W} =0 для каждого такта записи в РЗУ, в противном случае — \overline{W} =1. Поэтому, как правило, входы \overline{WE} всех $M\Pi C$ соединяют с выходом \overline{W} $Mn.M\Pi C$, как показано на рис. 8.

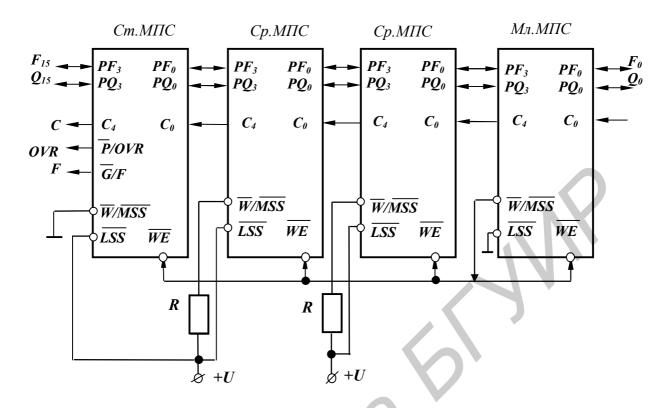


Рис. 8

В средней и старшей $M\Pi C$ на входе \overline{LSS} устанавливается логическая «1». При этом линия $\overline{MSS}/\overline{W}$ становится входом секции \overline{MSS} . В старшей $M\Pi C$ на этот вход подается уровень нуля, а в средних — уровень логической «1». Это позволяет вывести в старшей $M\Pi C$ на выходы \overline{P}/OVR и \overline{G}/F_3 сигналы OVR и F_3 , а на выводы средних $M\Pi C$ — выходы ускоренного переноса \overline{P} , \overline{G} .

Расширение знака при вычислениях может быть выполнено на несколько разрядов за 1 такт, для чего используется предпоследняя микрокоманда (код $I_8 - I_5 = E$, табл. 6). Микрокоманда E передает знак с вывода PF_0 MIIC на выводы PF_3 , $Y_3 - Y_0$. Принцип расширения знака используется не для модификации результата, а для формирования данных. Например, если 16-разрядный процессор должен интерпретировать 8-разрядные данные как двоичные числа со знаком, то знаковый разряд расширяется на один байт. Однако данный подход требует реорганизации межсекционных цепей сдвига процессора.

			Y	73	Y	2			P	F ₃		W	RC	G Q
I ₈ -I ₅	Функц. СДА	Функц. СДР	Cr. MIIC	Ср.,Мл. МПС	C _{T.} MIIC	Ср.,Мл МПС	Y_1	Y_0	CT.MITC	Ср., Мл. МПС	\mathbf{PF}_0	TSS=0	PQ_3	PQ_0
0000	$F/_2 \rightarrow Y$ Ap.C	$Q \rightarrow Q$	F ₃	PF ₃	PF ₃	F ₃	F ₂	F_1	Bx.	Bx.	F ₀	0	R	off
0001	$F/_2 \rightarrow Y$ Лог.С	$Q \rightarrow Q$	PF ₃	PF ₃	F ₃	F ₃	F ₂	F_1	Bx.	Bx.	F ₀	0	R	off
0010	$F/_2 \rightarrow Y$ Ap.C	$\frac{Q}{2} \rightarrow Q$ Jor.C	F ₃	PF ₃	PF ₃	F ₃	F ₂	F_1	Bx.	Bx.	F ₀	0	Bx.	Q_0
0011	$F/_2 \rightarrow Y$ Лог.С	$Q/2 \rightarrow Q$ Jor.C	PF ₃	PF ₃	F ₃	F ₃	F ₂	F ₁	Bx.	Bx.	F ₀	0	Bx.	Q_0
0100	$F \rightarrow Y$	$Q \rightarrow Q$	F ₃	F ₃	F ₂	F ₂	F ₁	F ₀	Bx.	Bx.	Р	0	R	off
0101	$F \rightarrow Y$	$\frac{Q}{2} \rightarrow Q$ Лог.С	F ₃	F ₃	F ₂	F ₂	F ₁	F ₀	Bx.	Bx.	Р	1	Bx.	Q_0
0110	$F \rightarrow Y$	$F \rightarrow Q$	F ₃	F ₃	F ₂	F_2	F ₁	F_0	Bx.	Bx.	P	1	R	off
0111	$F \rightarrow Y$	$F \to Q$	F ₃	F ₃	F ₂	F ₂	F_1	F ₀	Bx.	Bx.	P	1	R	off
1000	$2F \to Y$ Ap.C	$Q \rightarrow Q$	F ₃	F ₂	F_1	F ₁	F_0	PF ₀	F ₂	F ₃	Bx.	0	R	off
1001	$2F \rightarrow Y$ Лог.С	$Q \rightarrow Q$	F ₂	F ₂	F_1	F_1	F_0	PF ₀	F ₃	F ₃	Bx.	0	R	off
1010	$2F \rightarrow Y$ Ap.C	2 <i>Q</i> → <i>Q</i> Лог.С	F ₃	F ₂	F ₁	F ₁	F ₀	PF ₀	F ₂	F ₃	Bx.	0	Q ₃	Bx.
1011	$2F \rightarrow Y$ Лог.С	2 <i>Q</i> → <i>Q</i> Лог.С	F ₂	F ₂	F ₁	F_1	F ₀	PF ₀	F ₃	F ₃	Bx.	0	Q ₃	Bx.
1100	$F \rightarrow Y$	$Q \rightarrow Q$	F ₃	F ₃	F ₂	F ₂	F_1	F ₀	F ₃	F ₃	R_{off}	1	R	off
1101	$F \rightarrow Y$	<i>2Q→Q</i> Лог.С	F ₃	F ₃	F ₂	F ₂	F_1	F_0	F ₃	F ₃	$R_{\rm off}$	1	Q ₃	Bx.
1110	$PF_0 \rightarrow Y_0 Y_1 Y_2 Y_3$	$Q \rightarrow Q$	PF ₀	PF ₀	PF ₀	PF ₀	PF ₀	PF ₀	PF ₀	PF ₀	Bx.	0	R	off
1111	$F \rightarrow Y$	$Q \rightarrow Q$	F ₃	F ₃	F ₂	F ₂	F ₁	F ₀	F ₃	F ₃	R _{off}	0	R	off

Четыре микрокоманды (коды $I_8 - I_5 = 4$, 5, 6, 7) используются для формирования паритета на шине PF_0 . Паритет представляет собой результат операции M2 всех выходов AJV и сигнала, подаваемого на вход PF_3 . Паритетная логика обладает способностью наращивания путем соединения вывода PF_3 предыдущей MIIC с выводом PF_0 последующей. При этом уравнение паритета будет иметь следующий вид:

$$PF_{0\ M\pi.MIIC} = F_{15} \oplus F_{14} \oplus ... \oplus F_1 \oplus F_0 \oplus PF_{3\ Cm.MIIC}.$$

Специальные функции, выполняемые $M\Pi C$, определяются сигналами I_8-I_5 при наличии нулевой комбинации на входах I_4-I_0 . Схема может выполнять девять специальных функций, которые перечислены в табл. 10. Семь кодовых комбинаций не используются и являются запрещенными при функционировании $M\Pi C$.

1. Умножение без знака. Реализация данной функции предполагает выполнение базовых операций сдвига и сложения. Для умножения чисел с разрядностью, кратной четырем ($4n \times 4n$), требуется 4n тактов работы $M\Pi C$. При выполнении умножения предполагается, что регистр R_0 O3V предварительно был очищен и далее будет использоваться для размещения старших бит частичных произведений результата. Множимое записывается в регистр R_1 , а множитель — в регистр R_2 . Регистры R_0 и R_1 могут быть расположены в P3V $M\Pi C$ и адресованы по входам A и B соответственно, а также располагаться во внешней памяти процессорной секции. Во втором случае регистр R_1 используется как источник операнда R и соединяется с шиной $DA_0 - DA_3$, а регистр R_0 — как источник операнда S и как приемник результата и соединяется с шинами $DB_0 - DB_3$ и $Y_3 - Y_0$. После начальной установки множитель из R_2 пересылается в RG Q. После этого микрокоманда умножения без знака выполняется 4n раз.

Соединение выводов МПС при выполнении данной специальной функции показано на рис. 9.

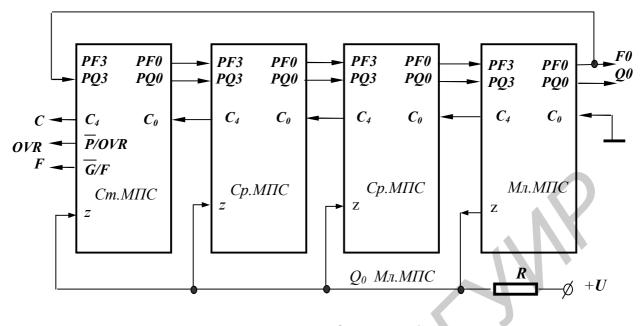


Рис. 9

Шина *z Мл.МПС* включена в режим выдачи информации. Сюда выдается младший разряд множителя из $RG\ Q\ (Q_0\ Mл.M\Pi C\)$. Линии $z\$ остальных $M\Pi C\$ являются входами. AJJV реализует функцию $F=S+C_0$ при z=0 или $F=R+S+C_0$ при z=1. Таким образом, при $z=Q_0=1$ выполняется сложение множимого из R1 с частичным произведением. При $z=Q_0=0$ сложение не выполняется $(C_0 = 0).$

По каждому положительному фронту синхросигнала содержимое выходов АЛУ сдвигается вправо, и полученное частичное произведение записывается в R_0 (рис. 10, 11). При этом сигнал C_4 $Cm.M\Pi C$ передается в старший разряд R_0 , а

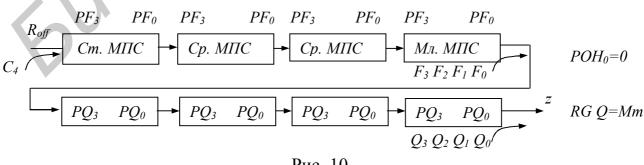


Рис. 10

младший разряд R_0 через выводы PF_0 Mл.MПС и PQ_3 Cm.MПС передается в регистр Q, одновременно выполняется сдвиг RG Q вправо.

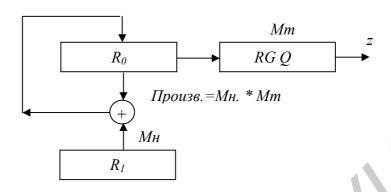
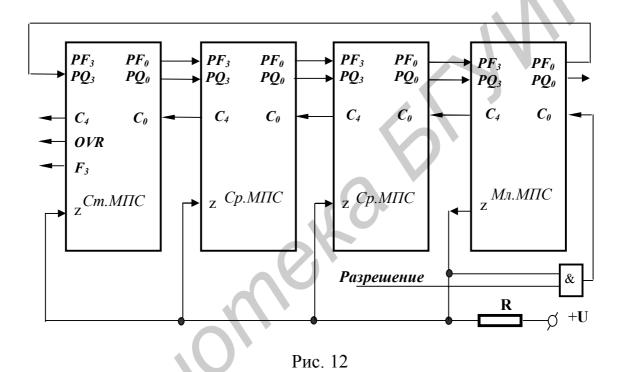


Рис. 11

При использовании типичного устройства управления для выполнения умножения без знака в $M\Pi\Pi$ требуется хранить только две микрокоманды (табл.7), а общее время умножения составит 4n+1 тактов.

Таблица 7


Антоо			Комментарий						
Адрес	I_0	$I_4I_3I_2I_1$	$I_8I_7I_6I_5$	\overline{OE}_I	ŌEŸ	A_3-A_0	B_3-B_0	C_0	
A_1	X	0110 $R+S+C_{\theta}$	0110 F→Y F→Q	X	X	0010 R ₂	XXXX	0	$RG_2 \rightarrow RG Q$ $(Mm \rightarrow RG Q)$
A_2	$0 \atop S=B$	0000	0000 R+S+C ₀	0 S=B	$ \begin{array}{c} 0 \\ \frac{1}{2}F \\ \rightarrow Y \end{array} $	0001 R ₁	0000 RG 0	0	Умножение $R_0 := R_0 + R_1$

2. Умножение в дополнительном коде. Данный алгоритм выполняется аналогично предыдущему, за исключением последнего такта, на котором производится коррекция результата. Начальная установка и первые 4n–1 тактов умножения выполняются точно так же, как и при умножении без знака. Однако в данном случае в старший разряд сдвинутого частичного произведения в каждом такте записывается сумма $F_3 \oplus OVR$, а не C_4 . Это обеспечивает передачу

требуемого бита в старший разряд частичного произведения при возникновении переноса.

На 4n-м такте знаковый разряд множителя находится на шине z Mл.МПС. В это время необходимо подать микрокоманду последнего такта умножения в дополнительном коде или выполнить коррекцию результата.

Объединение МПС при выполнении умножения в дополнительном коде представлено на рис. 12.

При умножении на входе C_0 процессора должен присутствовать уровень нуля до последнего такта. На последнем такте на данном входе должен присутствовать сигнал, соответствующий логическому уровню линии z. В связи с этим на входе C_0 устанавливают элемент 2И с входными сигналами z и разрешение. Сигнал «Разрешение» устанавливается в единичное состояние только на последнем такте умножения. В остальных тактах линия z используется точно так же, как и в предыдущей команде.

На последнем такте умножения в дополнительном коде АЛУ реализует функцию $F=S+C_0$ при z=0 и или $F=S-R-1+C_0$ при z=1. Таким образом, если множитель положительный, то процесс умножения на этом такте заканчивает-

ся, а если множитель отрицательный, то множимое вычитается из полученного частичного произведения, после чего умножение заканчивается.

Пример. Пусть Mh=7, Mm=-5. Тогда в результате умножения получим произведение $[-\Pi p]_{\partial}=1.1011101$. В соответствии с рис. 11 процесс формирования дополнительного кода результата будет иметь вид:

$$00000000 RGSm$$

1 шаг: $01110000 + MH$
 $00111000 RGSm + MH, RGSm \cdot 2;$

2 шаг: $01110000 + MH$
 $01010100 RGSm + MH, RGSm \cdot 2;$

3 шаг: $00000000 + 0$
 $00101010 RGSm + MH, RGSm \cdot 2;$

4 шаг: $01110000 + MH$
 $01001101 RGSm + MH, RGSm \cdot 2;$

5 шаг: $10010000 [-MH]_{\partial} - \kappa oppekuun$
 $11011101 RGSm - MH = [-\Pi p]_{\partial}$.

3. Нормализация чисел обычной и двойной длины. Операция нормализации чисел в дополнительном коде выполняется путем сдвига числа в сторону старших разрядов до тех пор, пока два старших бита не будут иметь различные значения. При этом знак нормализуемого операнда фиксируется в старшем разряде.

Пример

Нормализация выполняется для чисел как обычной, так и двойной длины. При нормализации чисел обычной длины используется только регистр Q, а при нормализации чисел двойной длины необходимо использовать еще

A J V и блок внутренней памяти. В первом случае операнд помещается в регистр Q и по положительному фронту тактового сигнала выполняется его сдвиг в сторону старших разрядов. Режим сдвига сохраняется до получения в двух старших битах регистра Q различных значений (0.1... или 1.0...), при этом через вывод PQ_0 M IIC в младшие разряды регистра Q вдвигаются нулевые значения. Появление «1» на выходе C_4 Cm.M IIC означает окончание операции нормализации; это обусловлено тем, что в Cm.M IIC значение переноса формируется по закону $C_4 = Q_3 \oplus Q_2$. Кроме того, по признаку OVR можно определить предпоследний такт нормализации, так как $OVR = Q_2 \oplus Q_1$, т.е. опережает C_4 на один такт.

Чтобы не выполнять нормализацию нулевого операнда, необходимо идентифицировать соответствующую ситуацию установкой какого-либо признака. С этой целью используется схема ФПН, на выходе z которой устанавливается «1», если все выходы регистра Q — нулевые. При появлении единицы на выходе C_4 операция нормализации прекращается, а на выходе F_3 Cm.MПC устанавливается знак числа, хранящегося в RG Q $(Q_3 \rightarrow F_3)$.

При выполнении операции нормализации обычной длины можно подсчитать количество тактов, необходимое для выполнения этой операции. С этой целью на выходе C_0 *МПС* устанавливается логическая единица, при этом регистр P3V, адресованный по каналу B, становится счетчиком тактов. В данном случае AJV выполняет функцию $F=S+C_0$.

Соединение выводов МПС при выполнении операции нормализации чисел обычной длины имеет вид, показанный на рис. 13.

При выполнении сдвигов счетчик тактов может быть организован во внешней памяти. В данном случае содержимое счетчика передается на S вход AJV через внешнюю шину $DB_3 - DB_0$, а результат выводится на шину $Y_3 - Y_0$. Если выполняется нормализация чисел двойной длины, то старшие разряды числа находятся в ячейке P3V, адресуемой по B, а младшие – в $RG\ Q$. Вывод PQ_3 старшей $M\Pi C$ должен быть соединен с выводом PF_0 младшей $M\Pi C$. На выводе

 PQ_0 младшей МПС (так же, как и при выполнении нормализации чисел обычной длины) устанавливается ноль.

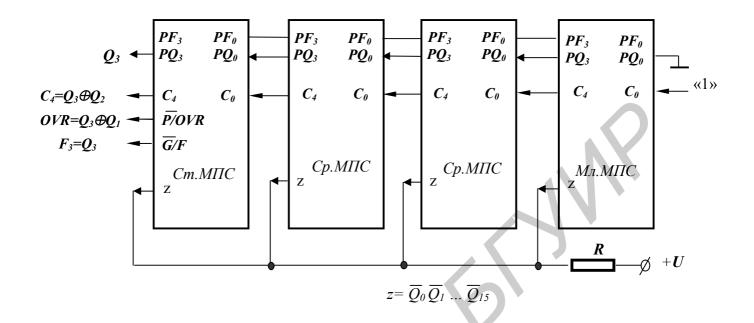


Рис. 13

Для хранения старших разрядов нормализуемого числа можно также использовать и внешнюю память, при этом источником операнда служит шина DB_3 – DB_0 , а сдвинутое значение передается на шину Y_3 – Y_0 . Так как при нормализации чисел двойной длины AЛУ участвует в выполнении операции и реализует функцию $F=S+C_0$, то на выходе C_0 необходимо установить уровень нуля. Для подсчета числа сдвигов в этом случае можно применять внешнюю логику, а сигналы C_4 , OVR и z используются так же, как и при нормализации чисел обычной длины, причем $C_{4Cm.MIIC} = F_3 \oplus F_2$ этой же секции, $OVR_{Cm.MIIC} = F_3 \oplus F_1$ тоже старшей MIIC, значение

$$z = \overline{F}_{n-1} \overline{F}_{n-2} ... \overline{F}_1 \overline{F}_0 \overline{Q}_{n-1} \overline{Q}_{n-2} ... \overline{Q}_1 \overline{Q}_0,$$

где n — разрядность нормализуемого числа.

Соединение выводов $M\Pi C$ при нормализации чисел двойной длины показано на рис. 14.

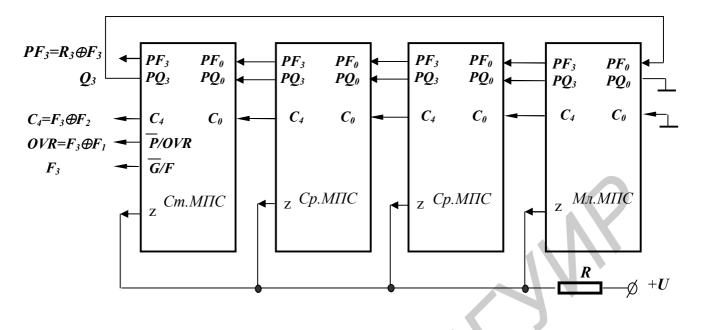


Рис. 14

Приведенное на рис. 14 обозначение R_3 указывает на знаковый разряд операнда, подаваемого на R-exod АЛУ.

Код микрокоманды для данной специальной функции I_8-I_5 =1010 (для операнда двойной длины) и I_8-I_5 =0111 (для операнда одинарной длины).

4. Преобразование «число со знаком — дополнительный код» (I_8 — $I_5 = 0101$). В процессе отработки данной специальной функции положительные числа не модифицируются, а отрицательные — преобразуются в дополнительный код от текущего кода операнда.

В ходе преобразования исходное число подается на вход SAJV (например, из регистра RGB EBII, из RGQ или с внешней шины $DB_3 - DB_0$), а его знак – разряд S_3 Cm.MIIC — на шину z и определяет, над каким числом (отрицательным или положительным) выполняются действия. Вход C_0 Mn.MIIC соединяется с шиной z. АЛУ реализует следующий алгоритм вычислений:

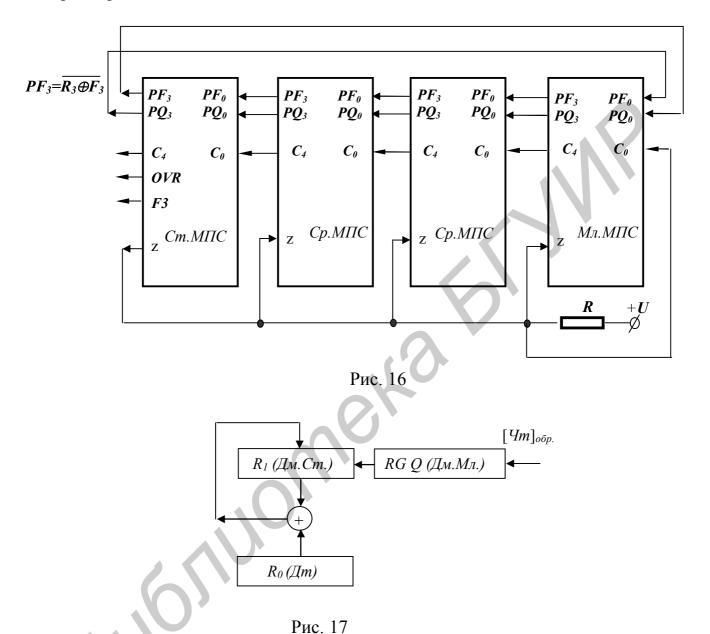

$$F=S+C_0$$
 при $z=0$,

 $F = \overline{S} + C_0$ при z=1 (образование дополнительного кода).

При преобразовании отрицательного числа на шине z Cm. $M\Pi C$ появляется потенциал логической единицы, что позволяет в процессе преобразования к

обратному коду прибавить единицу, так как z= C_{θ} .

Соединение выводов МПС для выполнения функции кодопреобразования имеет следующий вид:



- 5. Инкрементирование операнда на 1 или 2. Увеличение числа на единицу или двойку выполняется за один такт. Модифицируемый операнд подается на вход S $A\Pi V$ (например, из регистра RGB $BB\Pi$, из RGQ или с внешней шины $DB_3 DB_0$), после чего выполняется функция $F = S + C_0 + 1$, что при $C_0 = 1$ предполагает увеличение операнда на 2, а при $C_0 = 0$ на единицу. При выполнении данного преобразования используется стандартное включение $M\Pi C$.
- 6. Деление в дополнительном коде. Данная специальная функция выполняется в соответствии с микрокомандой, представленной в табл. 8.

Таблица 8

Алпас		Микрокоманда											
Адрес	I_0	$I_4I_3I_2I_1$	$I_8I_7I_6I_5$	\overline{EA}	\overline{OEY}	$A_3 - A_0$	B_3-B_0	C_0	рий				
A_{I}	0 S=B	0000	$ \begin{array}{c} 1100 \\ S+R+C_0 \\ z=0 \\ S-R-1+C_0 \\ z=1 \end{array} $	0 R=A	X	0000 R ₀ (Дт)	0001 R ₁ (Дм.Ст. часть)	Z	Деление в доп. коде				

Соединение выводов МПС при выполнении операции деления в дополнительном коде показано на рис. 16; рис. 17 поясняет расположение операндов в регистрах и размещение частного.

При выполнении данной специальной функции следует помнить, что используемый алгоритм деления формирует частное в обратном коде. Таким образом, при отрицательном частном необходимо выполнить коррекцию результата с помощью специальной микрокоманды (табл. 9). Данная микрокоманда фактически прибавляет единицу в младший разряд частного, если результат деления отрицательный. При положительном частном коррекция не выполняется.

Л нрос			Μı	ікроком	анда				Коммента-
Адрес	I_0	$I_4I_3I_2I_1$	$I_8I_7I_6I_5$	EA	OEY	A_3 - A_0	B_3 - B_0	C_0	рий
A2	1 S=Q	0100 S+C ₀	0110 F→Q	0 R=A	X	0000	0001	1	Деление в доп. коде (коррекция)

Сводная таблица специальных функций может быть представлена в следующем виде:

Таблица 10

Мк. код.		P	F_3						\overline{P}/O	VR	\overline{G}	F_3		Z	
Bx I_8-I_5	Функция АЛУ	Cm.MIIC	Мл.Ср.МПС	PF_0	PQ_3	PQ_0	W	C ₄	Ст.МПС	Ст.МПС	Ст.МПС	Мл.Ср.МПС	Ст.МПС	Cp.MIIC	$M_{\Pi}.M\Pi C$
1. Умножение без знака															
0000	$F=S+C_0$ $npu z=0,$ $F=S+R+C_0$ $npu z=1$	R_{off}	Bx	F_0	Bx	Q_{θ}	0	C_4	OVR	\overline{P}	F_3	\overline{G}	Bx	Вх	Q_0
			2. Y.	множ	сение	в доп	олни	ітел	ьном к	оде					
0010	$F=S+C_0$ $npu \ z=0$, $F=S+R+C_0$ $npu \ z=1$	R_{off}	Bx	F_0	Bx	Q_{θ}	0	C_4	OVR	\overline{P}	F_3	\overline{G}	Bx	Вх	Q_0
				3.	Инкр	ремен	тир	ован	ие						
0100	$F = S + I + C_0$	Bx	Bx	P	R_{off}	R_{off}	0	C ₄	OVR	\overline{P}	F_3	\overline{G}	z	z	Z
	4. Пр	реобр	азова	ние «	число	со зн	акол	$u - \partial$	ополні	ител	ьный	і код	<i></i>		
0101	$F=S+C_0$ $npu \ z=0,$ $F= \gamma \ S+C_0$ $npu \ z=1$	Bx	Bx	Р	R_{off}	$R_{o\!f\!f}$	0	C_4	OVR	\overline{P}	*	\overline{G}	S_3	Вх	Bx

Мк. код		Pi	F_3						\overline{P}	OVR	\overline{G}	F_3		Z	
I_8-I_5	Функция АЛУ	Ст.МПС	Мл.Ср.МПС	PF_0	$P \mathcal{Q}_3$	$P \mathcal{Q}_0$		C ₄	Ст.МПС	Ст.МПС	Ст.МПС	$M\pi.Cp.M\Pi$	Ст.МПС	Cp.MIIC	Мл.МПС
5. Последний цикл умножения в дополнительном коде															
0110	$F=S+C_0$ $npu \ z=0$, F=S-R- $-1+C_0$ $npu \ z=1$	$R_{o\!f\!f}$	Bx	F_0	$R_{o\!f\!f}$	Q_0	0	C_4	OVR	\overline{P}	F_3	\overline{G}	Bx	Bx	Q_0
	•		6	. Нор	мализ	вация	обыч	ной д	линь	ı					
0111	$F=S+C_0$	F_3	F_3	$R_{o\!f\!f}$	Q_3	Bx	0	*	$Q_2 \oplus Q_I$	P	Q_3	\overline{G}		***	
			7	". Нор	мали	зация	двой	ной д.	лины	ı					
1010	$F=S+C_0$	$R_3 \oplus F_3$	F_3	Вх	Q_3	Bx	0	***	$F_2 \oplus F_I$	\overline{P}	F_3	\overline{G}	:	****	k
			8.	Делег	ние в	допол	іните	2льнол	и код)e					
1100	$F=S+R+C_0$ $npu z=0,$ $F=S-R-$ $-l+C_0$ $npu z=1$	$\neg (R_3 \oplus F_3)$	F_3	Bx	Q_3	Bx	0	C ₄	OVR	\overline{P}	F_3	\overline{G}	* * * * * * * * * * * * * * * * * * *	Bx	Bx
		9.)	Делен	ие в д)ополі	нител	вном	коде	(кор	рекц	ия)				
1110	$F=S+C_0$ $npu\ z=0,$ $F=S-R-$ $-I+C_0$ $npu\ z=1$	F_3	F_3	R_{off}	Q_3	Вх	0	C_4	OVR	\overline{P}	F_3	\overline{G}	* * * * * *	Bx	Вх

^{*} F_3 , если z=0; $S_3 \oplus F_3$, если z=1.

** $Q_3 \oplus Q_2 - \partial$ ля Ст.МПС, $C_4 - \partial$ ля остальных МПС.

*** z регистра Q.

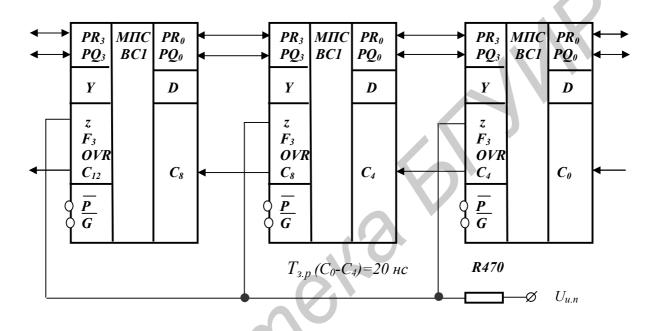
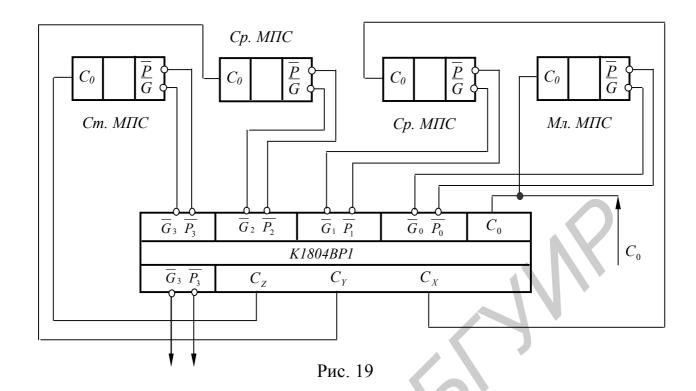
**** $F_3 \oplus F_2 - \partial$ ля Ст.МПС, $C_4 - \partial$ ля остальных МПС.

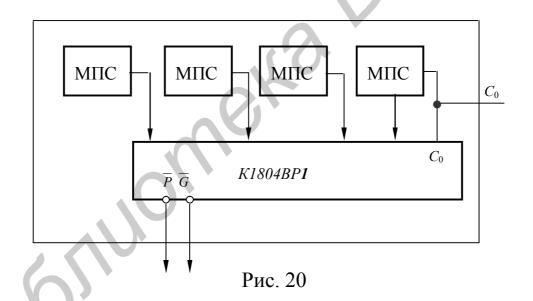
^{****} z выходов АЛУ и регистра Q.

^{*****} $\overline{R_3 \oplus F_3}$.

2.3. Построение операционных устройств на базе МПС К1804ВС1

Требуемая разрядность операционного устройства обеспечивается объединением необходимого числа микропроцессорных секций. Например, если разрядность обрабатываемых в компьютере слов D равна 12, то схема вычислительного блока для данного частного случая будет иметь вид


Рис. 18

Приведенное соединение *МПС* обеспечивает последовательное распространение переноса от младших к старшим разрядам. В связи с этим при синтезе многоразрядных процессоров приходится *решать задачу* уменьшения времени задержки распространения переноса с целью повышения скорости выполнения арифметических операций. Для решения данной задачи при проектировании применяют схемы ускоренного переноса (*CУП*) *К1804ВР1* (рис. 19).

Выходы \overline{P} , \overline{G} схемы ускоренного переноса используются для каскадного соединения нескольких *ИМС К1804ВР1*. В этом случае схема, приведенная на рис. 19, рассматривается как единый блок (рис. 20).

Рассмотрим схему распространения переноса в процессоре без блока СУП, а также при наличии данного быстродействующего модуля.

Для первой $M\Pi C$ в блоке время задержки распространения определяется разницей во времени между моментом появления переноса C_4 на выходе $M\Pi C$ и моментом подачи двоичного кода на адресные входы P3V. Это время составляет величину примерно 70 нс. Для остальных секций время задержки распространения определяется равным $t_{3.p}$ ($C_0 - C_4$)=20 нс. Таким образом, в схеме, приведенной на рис. 19, $t_{3.p}$ переноса C_{12} на выходе 3-й микросхемы составит 70 + 20 + 20 = 110 нс.

В схеме с $CУ\Pi$ аналогичный выход обозначен как C_z . Его время задержки определяется задержкой появления сигналов \overline{P} , \overline{G} $M\Pi C$ относительно времени подачи адресов на входы P3V и задержкой в $CY\Pi$, равной 20 μc (общая задержка для всех UMC). Итого: $t_{3,p} = 79$ μc .

Другая задача, решаемая при объединении *МПС*, состоит в построении цепей передачи информации при организации сдвигов. Принципиально она может быть решена путем непосредственного соединения выходов PR_3 PQ_3 младших МПС со входами PR_0 PQ_0 старших секций. Однако в операционном устройстве остаются свободными соответствующие выходы младшей и старшей секций. Кроме того, решение ряда задач в процессоре может потребовать выполнения различных типов сдвигов. Каждая разновидность таких операций определяет различное соединение оставшихся свободными выводов или подачу на их входы определенной информации. Как правило, требуемые коммутации в БОД (блоке обработки данных) осуществляются с помощью специальной схемы — узла сдвига данных (рис. 21).

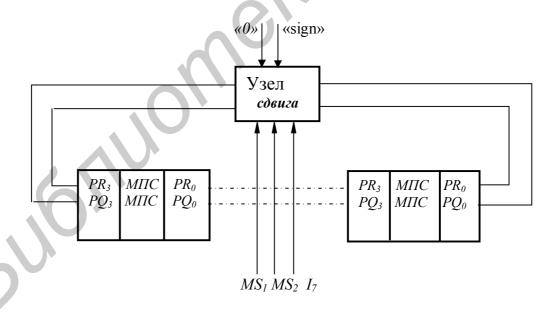


Рис. 21

На практике узел сдвигов может быть реализован с использованием мультиплексоров, управление которыми осуществляется сигналами MS_1 MS_2 , а также сигналом микрокоманды I_7 , который определяет направление сдвига. В

общем случае эти сигналы вносятся в структуру микрокоманды в специально отведенные разряды.

Третья задача, решаемая при построении операционных устройств, — это формирование и обработка слова состояния процессора, т.е. признаков, предназначенных для выполнения условных переходов.

Слово состояния операционного устройства включает в себя сигналы PR_3 PQ_3 на выходах старшей $M\Pi C$, PR_0 PQ_0 на выходах младшей $M\Pi C$, признаки z, F_3 , OVR, C_4 . Для хранения признаков в компьютерах используется регистр состояния RG C или регистр флагов (рис. 22).

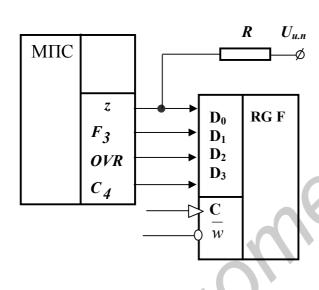


Рис. 22

Запись признаков в регистр осуществляется по синхросигналу C на соответствующем входе RG F. Сигнал на входе \overline{w} используется для запрещения записи и организации ветвления в микропрограмме по нескольким условиям. При этом переход по каждому флагу осуществляется, как правило, с помощью отдельной микрокоманды. В связи с этим в течение всего времени ветвления по состоянию RG F (от n-й микро-

команды) вновь формируемые признаки результатов не запоминаются.

Для ускорения процесса ветвления и усложнения условия перехода используются специальные аппаратные средства, реализованные в виде *БИС К1804ВР2*. Данная схема предназначена для выполнения микроопераций сдвига и обработки слова состояния процессора. Схема соединения *СУСС* (схема управления состояниями и сдвигами) и *МПС* имеет вид, показанный на рис. 23.

БИС K1804BP2 осуществляет следующие функции:

1) формирует сигналы входного переноса в МПС и схему ускоренного переноса;

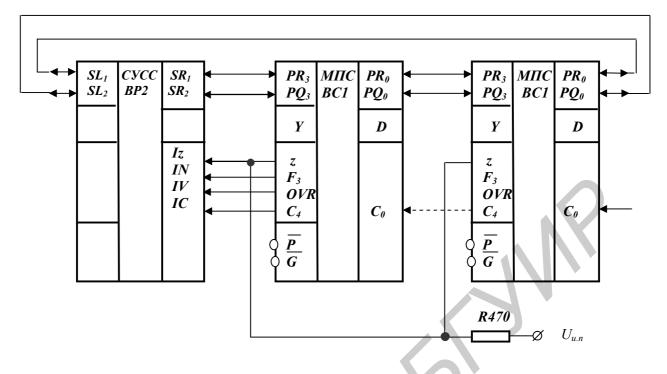


Рис. 23

- 2) выполняет арифметические, логические и циклические сдвиги чисел обычной и двойной длины;
- 3) осуществляет преобразование как целого $CC\Pi$, так и отдельных бит любого из 2 регистров состояния ($RG\ F_1$ и $RG\ F_2$), входящих в состав CYCC;
- 4) выполняет проверку за один такт одной из 16 различных комбинаций условий, поступающих из внутренних регистров состояния или из *МПС*.

2.4. Микропрограммирование МПС

Определение: элементарная функциональная операция, выполняемая за один тактовый интервал времени и приводимая в действие одним управляющим сигналом, называется микрооперацией. Соответственно совокупность микроопераций, выполняемых параллельно во времени, называют микрокомандой.

Выполнение всех действий в процессоре осуществляется в виде отработки множества команд (процессоры с фиксированной архитектурой) или микроко-

манд. В частности, микропроцессорная секция *К1804ВС1* функционирует под действием микрокоманд, хранящихся в управляющей памяти. При этом всю последовательность микрокоманд, предназначенных для реализации некоторого преобразования, называют микропрограммой.

Стандартная структура микрокоманды обычно включает в свой состав две основные части: операционную и адресную. Адресная часть используется при формировании адреса следующей микрокоманды. При этом в состав компьютера включается специальный блок (EMV), который позволяет выполнять различные действия над адресами.

Управление процессом преобразования данных осуществляется операционной частью микрокоманды. В этом случае микрооперации кодируются двоичными кодами и для кодирования используют три основных способа:

1. Вертикальное кодирование или микропрограммирование. Данный метод предполагает, что всей совокупности микроопераций присваиваются коды, образующие ряд целых чисел без знака. При отработке таких микрокоманд специальный дешифратор преобразует код микрокоманды в один управляющий сигнал, который и является сигналом микрооперации. Недостаток способа заключается: 1) в необходимости построения достаточно сложного дешифратора; 2) в увеличении длины микропрограммы (в одной микрокоманде содержится только одна микрооперация); 3) в отсутствии наглядности функционального назначения микрокоманды.

Число разрядов в операционной части при вертикальном микропрограм-мировании определяется по формуле

$$n_{o.4} = \operatorname{int} \log_2 m ,$$

где int — это ближайшее большее целое число; m — количество микроопераций.

2. Горизонтальное микропрограммирование. При данном способе каждому разряду операционной части микрокоманды ставится в соответствие определенная микрооперация. Наличие в разряде единицы говорит о том, что некото-

рая микрооперация выполняется, причем выполнение действий под управлением i разряда не зависит от состояния других j разрядов. Длина операционной части при горизонтальном микропрограммировании составляет число m, т.е. соответствует количеству микроопераций.

Достоинства метода: 1) возможность выполнения одновременно любого числа функционально совместимых микроопераций; 2) отсутствие схем дешифрации. Недостатки: 1) большая длина микрокоманды, достигающая в отдельных случаях сотен бит; 2) большая разрядность 3V микрокоманд или большая длительность выборки управляющих слов при малой разрядности 3V $M\kappa$.

3. Смешанный способ микропрограммирования. В данном случае сочетаются горизонтальный и вертикальный способы кодирования, при этом множество микроопераций m разбивается на k подмножеств, а в составе микрокоманды каждому подмножеству выделяется свое поле:

$$m = \bigcup_{i=1}^k m_i.$$

Соответственно каждое поле имеет свое функциональное назначение, а микрооперации внутри подмножества (поля) кодируются вертикально.

Длина операционной части микрокоманды (рис. 24) при смешанном микропрограммировании определяется величиной

$$n_{o.4} = \sum_{i=1}^{k} \operatorname{int} \log_2 m_i ,$$

где k – число функциональных групп; m_i – число микроопераций в группе.

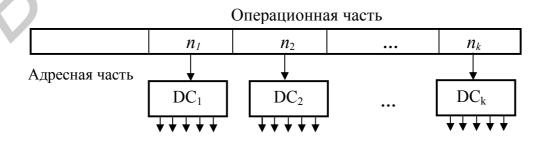


Рис. 24

Смешанный способ микропрограммирования применяется наиболее часто. Однако в данном случае требуется решать задачу разбиения множества всех микроопераций на непересекающиеся подмножества, т.е. микрооперации подмножества m_i не должны включаться в подмножество m_j и наоборот. Например: $M\Pi C\ 1804BC1$ реализует 24 микрооперации, которые разбиты на 3 группы по 8 микроопераций. Каждая группа имеет свое функциональное назначение, принципиально отличное от преобразований, кодируемых в другой группе.

Теперь, с учетом методов кодирования микроопераций, рассмотрим процесс формирования структуры микрокоманды, достаточной для управления БИС К1804ВС1.

Итак, на первом этапе в состав микрокоманды включаются три поля для сигналов управления $I_0 - I_8$, что позволяет получить следующую структуру:

$$I_8 - I_6$$
 $I_5 - I_3$ $I_2 - I_0$... $RGMk$

Далее, будем учитывать наличие в архитектуре процессора POH_i , назначение которых состоит в хранении операндов или другой информации, используемых в вычислительном процессе. В общем случае номера регистров указываются явно, хотя допускается и неявное указание при адресации, например, регистра Q. Используя явный принцип адресации регистров, на данном этапе получаем следующую структуру $RG\ Mk$:

Рис. 26

Приведенная структура содержит основную информацию, необходимую для выполнения действий в *МПС*. Однако, как правило, в состав *RG Mk* включают ряд дополнительных сигналов или полей, необходимых для управления

другими структурными компонентами компьютера. К ним относят сигналы управления памятью, блоком микропрограммного управления, системой вводавывода, схемами внутреннего интерфейса.

Реализация адресной части микрокоманды зависит от используемого способа преобразования адресов и имеющегося комплекта аппаратных средств. Основные поля в этой части — это поле управления адресом следующей микрокоманды $P_{i-1} - P_{0}$, и поле адреса следующей микрокоманды $BR_{j-1} - BR_{0}$.

Поле управление адресом определяет источник адреса в EMV , который подключается к адресной шине, если выполнено некоторое заданное условие или безусловно. При выполнении безусловного перехода адрес микрокоманды, как правило, извлекается из разрядов поля $\mathit{BR}_{j-1} - \mathit{BR}_0$, где программируется предварительно.

Заполнение полей любой микрокоманды производится в соответствии с ориентацией ее на выполнение определенных действий. При этом множество микроопераций *МПС* допускает многовариантность кодовых наборов при выполнении одной и той же логической или арифметической операции.

Для примера рассмотрим методику составления микрокоманды для управления данными в системе, использующей архитектуру процессорного комплекта K1804BC1.

Пусть требуется выполнить увеличение содержимого регистра общего назначения с номером 0000, входящего в состав $M\Pi C$. Структуру микрокоманды, достаточную для управления данной системой, будем считать априорно заданной в виде

				R	RG Mk		
BR_3 - BR_0	P_3 - P_0	$Ms2 I_8 - I_6$	$Ms1 I_2 - I_0$	$C_0 I_5 - I_3$	$A_3 - A_0$	B_3-B_0	$D_3 - D_0$

Рис. 27

Здесь сигналы Ms2, Ms1 — это биты управления сдвигами (см. рис. 21); D_3 — D_0 — непосредственный операнд.

Пусть в начальный момент времени в регистре с адресом 0000 храниться нулевая константа. Тогда по табл. 2 (управление функцией $A\Pi Y$) находим микрокод $I_5 - I_3 = 000$, определяющий операцию суммирования вида $R + S + C_0$, где R и S – входы $A\Pi Y$ $M\Pi C$. Полагая значение C_0 равным «1», определим содержимое третьей тетрады RG Mk в виде (рис. 28).

Рис. 28

Далее определим источники информации на входах R и S AЛУ. Для простоты положим один из операндов, например по входу R, равным нулю. Тогда из табл. 1 (управление данными) выберем микрокод $I_2 - I_0 = 011$, соответствующий подаче на входы AЛУ содержимого POH по адресу из $B_3 - B_0$ и технологически «зашитой» константы «0». Таким образом, в структуре RG Mk на данный момент будут определены 2 поля:

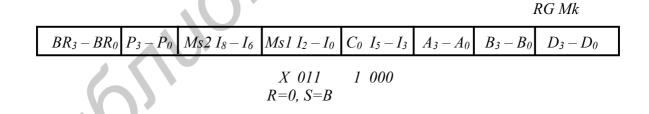


Рис. 29

Выберем в качестве приемника результата тот же POH, который является источником операнда. Адрес этого регистра указываем в поле B и определяем запись результата в P3V по форме $F \rightarrow B$. Это действие в $M\Pi C$ производится под управлением микрокода $I_8 - I_6 = 011$ (см. табл. 3). В общем случае номер регистра, адресуемый в $RG\ Mk$, может быть любой в диапазоне $0-F_{16}(15_{10})$. В частном

случае при POH_i =0000 поле B_3 — B_0 будет иметь значение 0000, а структура микрокоманды вид

 $RG\ Mk$ $BR_3-BR_0\ P_3-P_0\ Ms2\ I_8-I_6\ Ms1\ I_2-I_0\ C_0\ I_5-I_3\ A_3-A_0\ B_3-B_0\ D_3-D_0$ $Aдресная\ часть$ $X\ 011\ X\ 011\ 1\ 000\ XXXX\ 0000\ XXXX$ $F{
ightarrow}B\ R=0,\ S=B\ R+S+C_0\ RG_0$

Рис. 30

Адресные линии $A_3 - A_0$ в нашем примере не используются, поэтому здесь может быть указан произвольный код XXXX. Программирование адресной части требует специальных знаний и может быть рассмотрено после изучения темы «Устройства управления».

2.5. Процессоры с фиксированной архитектурой

Деление структуры процессора на управляющий и операционный автоматы позволяет синтезировать исполнительную часть схемы в соответствии с некоторыми общими правилами.

Исходные данные для построения OA формируются на основе выполняемых проектируемым процессором функций:

- 1) множество входных слов $DI=\{DI_1, ..., DI_i\}$, представляющих собой исходные операнды решаемой задачи;
- 2) множество выходных слов $DO = \{DO_1, ..., DO_j\}$, представляющих собой результаты операций;
- 3) множество внутренних слов $R = \{R_1, ..., R_p\}$, используемых для представления промежуточных результатов в процессе выполнения операций;
- 4) множество микрокоманд $Y = \{y_1, ..., y_m\}$, инициирующих преобразования над словами информации вида

$$y_q) R_u := \varphi_q \{R_t, ..., R_s\},$$

где φ_q – вычисляемая функция.

5) множество логических условий $X=\{x_1, ..., x_l\}$, где $x_w= \coprod_z \{R_t, ..., R_s\}$, z=1, 2, ..., l, а \coprod_z – булева функция.

Таким образом, функция операционного автомата считается заданной, если определены множества DI, DO, R, Y, X и алгоритмы преобразования данных.

Правило синтеза канонической структуры операционного автомата заключается в выполнении следующих действий:

- 1. Словам R, определяемым алгоритмом в качестве внутренних, ставятся в соответствие регистры DL длиной, равной длине слов. Если слово DL разделяется на поля, то в соответствующем регистре выделяются подрегистры, ориентированные на хранение содержимого подполей.
- 2. Словам DI, определяемым алгоритмом в качестве входных, ставятся в соответствие входы структурной схемы OA. Каждый вход соединяется с соответствующим регистром входной шиной.
- 3. Словам DO, которые определены как выходные, ставятся в соответствие выходы структурной схемы OA. Каждый выход соединяется с соответствующим регистром выходной шиной.
- 4. Каждой микрокоманде y_q , которая определяется оператором присваивания $R_u := \varphi_q\{R_t, ..., R_s\}$, ставится в соответствие комбинационная схема φ_q , причем входы этой схемы подключаются к регистрам R_t , ..., R_s , а выходы соединяются управляемой шиной с регистром R_u .
- 5. Каждому логическому условию $x_w = \text{ш}_z\{R_t, ..., R_s\}$ ставится в соответствие комбинационная схема, входы которой соединяются с регистрами, а выходы отмечаются сигналами x_w и используются управляющим автоматом для ветвления программы. В некоторых случаях комбинационная схема может отсутствовать, если сигнал x_w является выходом одиночного разряда регистра.

2.6. Типовые решающие узлы ОА

Микрооперация передачи информации между регистрами встречается в компьютерных системах наиболее часто. Схемотехнически она реализуется с

помощью группы логических элементов, управляемых от схемы YA. На практике межрегистровые связи организуются с учетом реальных требований к быстродействию и сокращению затрат на реализацию компьютерных устройств.

Наиболее часто встречаются следующие схемы передачи:

- 1. Прямая передача данных (рис. 31, 32).
- 2. Передача данных со сдвигом влево или вправо на один разряд (рис. 33, 34).
- 3. Передача данных с инверсией (образование обратного кода), со сдвигом на два разряда и т.д.

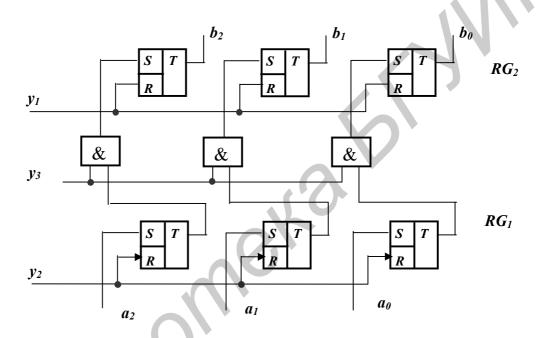


Рис. 31

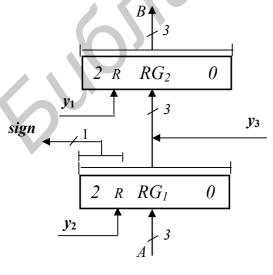


Рис. 32

На структурных схемах межрегистровая передача изображается в виде шины передачи информации, управляемой сигналом микрооперации (см. рис. 32). В приведенной схеме реализуются микрооперации:

$$y_1$$
) $RG_2[2,0]$:=0
 y_2) $RG_1[2,0]$:=0
 y_3) $RG_2[2,0]$:= $RG_1[2,0]$.

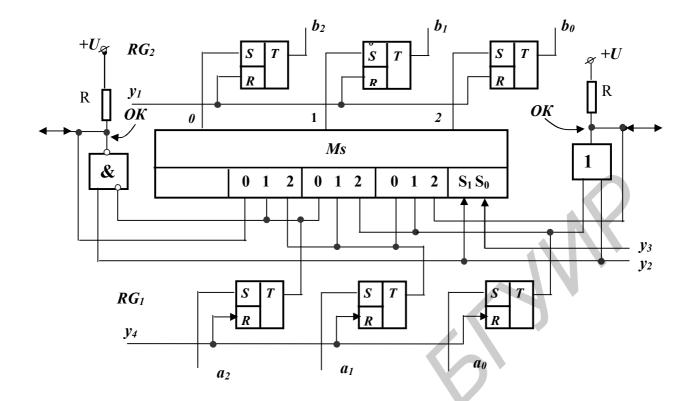
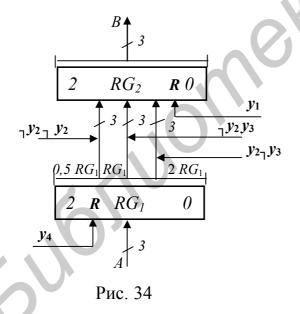



Рис. 33

В схеме (см. рис. 33, 34) реализуются следующие механизмы сдвига (OK — открытый коллектор):

$$\overline{y}_2 y_3$$
) $RG_2 [2,0] := RG_1 [2,0]$;
 $\overline{y}_2 \overline{y}_3$) $RG_2 [2,0] := R1 (0.RG_1 [2,0])$;
 $y_2 \overline{y}_3$) $RG_2 [2,0] := L1(RG_1 [2,0].0)$;
 $y_2 y_3$) — запрещено.
 $\overline{y}_i = \neg y_i$

4. Для обмена данными в цифровых устройствах используют информационные каналы, которые называют шинами. В общем случае информация может передаваться по шине в виде последовательности бит по одной линии связи или же в виде слов по нескольким линиям. Соответственно и шины подразделяют на параллельные и последовательные. При построении схем часто используют шинные формирователи (ШФ), позволяющие осуществить двунаправленную передачу данных. Одна из реализаций ШФ имеет вид, показанный на рис. 35.

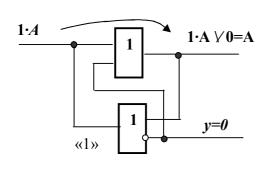


Рис. 35

В приведенной схеме выходы элементов коммутирующей логики должны быть выполнены по схеме с открытым коллектором. Тогда при y=0 на выходе нижнего элемента будет сформирована логическая единица. Потенциал логической единицы, умноженный на передаваемую информацию монтажно, дизъюнктивно складыва-

ется с сигналом y=0 на верхнем логическом элементе. В итоге в правую сторону по двунаправленной шине передается неискаженная информация.

Другой способ организации двунаправленной шины предполагает использование трехстабильных управляемых усилителей. Схема шинного формирователя при этом имеет следующий вид:

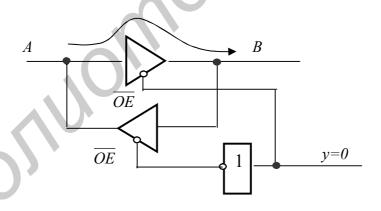
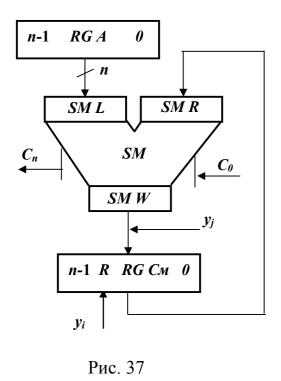
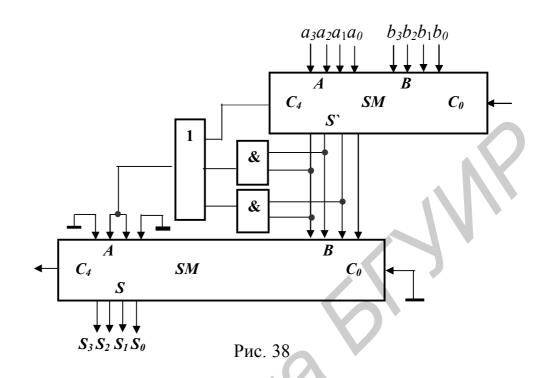



Рис. 36

5. Накапливающий и двоично-десятичный сумматоры. Накапливающий сумматор предназначен для хранения информационного слова и выполнения микрооперации сложения:

$$RGCM[n-1.0] := RGCM[n-1.0] + RGA[n-1.0] + C_0$$
.


Приведенная на рис. 37 схема предполагает распространение переноса последовательно от младших к старшим разрядам. Это определяет низкое быстродействие устройства и соответственно малые затраты аппаратуры.

Большее быстродействие может быть достигнуто в схемах, реализующих ускоренный перенос. Сюда относят устройства с групповым, параллельным и другими ви-

дами распространения переноса. Однако высокое быстродействие схемы предполагает увеличение сложности и снижение надежности изделия.

Ряд алгоритмов, реализуемых в схемах OA, выполняет операции над числами, представленными в двоично-десятичном коде. При построении таких устройств следует помнить, что одно 4-разрядное двоичное слово позволяет представить десятичные числа в диапазоне от θ_{10} до 15_{10} . При двоично-десятичном кодировании из 16 используется только 10 комбинаций. Поэтому, если при суммировании получилось одно из значений в диапазоне $10_{10} - 15_{10}$, то оно будет содержать псевдотетраду, коррекция которой осуществляется добавлением числа 6_{10} = 0110_2 . Построение схемы двоично-десятичного сумматора осуществляется с учетом следующих соображений. Так, появление псевдотетрады в сумме S =A+B+ C_0 предполагает формирование кодовых комбинаций: 1010, 1011, 1100, 1101, 1110, 1111. При склеивании соответствующие конъюнкции приводят к ДНФ вида 11хх $\vee 1$ х1х. Далее следует учесть, что появление сигнала переноса C_4 также свидетельствует о двоично-десятичном переполнении. Таким образом, применение схемы ДНФ, регистрирующей указанные

комбинации и сигнал переноса C_4 , позволяет сформировать структурную схему, автоматически корректирующую результат суммирования:

2.7. Синтез ОА с элементами управляющей логики

Выполним синтез устройства, предназначенного для умножения двух чисел по методу Мак-Сорли. Сущность метода заключается в умножении чисел с одновременным анализом двух разрядов множителя (Mm), начиная с его старших разрядов. Алгоритм умножения по данному методу задается табл. 11:

Таблица 11

Мл. разряд	Пара разря-	Знак дейст.	Кратн.
пред. пары	дов Мт	, , , , , , ,	Мн.
0	00	нет	0
0	01	+	2 Мн.
0	10	+	2 Мн.
0	11	+	4 Мн.
1	00	_	4 Мн.
1	01	_	2 Мн.
1	10	_	2 Мн.
1	11	нет	0

Выполним умножение операндов, выбрав в качестве множимого и множителя значения: $MH = 51_{10} = 110011_2$, $Mm = 54_{10} = 110110_2$.

Таблица 12

	Tuonuņu 12
00000000000000	См
110011	Мн
110110	Mm
00001100110000	C_M+4M_H , $C_M\cdot 2^2$
0110	$Mm \cdot 2^2$
11111110011010	[—2Mн] _д
00001011001010	$C_M + [-2M_H]_{\partial}$
00101100101000	$C_M \cdot 2^2$
10	$Mm \cdot 2^2$
11111110011010	[—2Мн] _д
00101011000010	$C_M+[-2M_H]_{\partial}$
10101100001000	$C_M \cdot 2^2$
00	$Mm \cdot 2^2$
101011000010	Произведение

В приведенном примере использован алгоритм умножения со сдвигом множителя и частичных произведений влево:

$$M_{H} = 51_{10}$$
 $Mm = 54_{10}$
 $\Pi pouse. = 2754_{10}$

Анализ метода умножения позволяет заключить следующее:

- 1) регистр множителя должен иметь n+1=7 разрядов, предназначенных для хранения операнда и младшего разряда предыдущей пары;
- 2) регистр множимого должен иметь длину, равную длине регистра суммы, так как суммирование отрицательного множимого и сумматора требует дополнения $RG\ Mh$ в старших разрядах единичными битами, а длина сумматора в рамках данного алгоритма равна 2n+2=14 разрядам;
- 3) управляющая логика комбинационного типа подключается к старшим разрядам регистра множителя $RG\ Mm[6,4]$ и формирует все требуемые табл. 11 импульсы управления: y_v вычитание, y_s сложение, y_m формирование 4MH;
- 4) формирование требуемых кодов и кратности *Мн* будем выполнять с помощью логики инвертирования и мультиплексирования.

Формирование сигналов управления на выходе блока «Управляющей логики» может быть записано с использованием булевых равенств на основании таблицы умножения:

$$y_{v} = (\bar{x}_{1}\bar{x}_{2} \vee \bar{x}_{1}x_{2} \vee x_{1}\bar{x}_{2})T_{\partial} = x_{1}T_{\partial} \vee \bar{x}_{2}T_{\partial}, \qquad x_{1} = RGMm [5],$$

$$y_{s} = (\bar{x}_{1}x_{2} \vee x_{1}\bar{x}_{2} \vee x_{1}x_{2})\bar{T}_{\partial} = \bar{x}_{1}\bar{T}_{\partial} \vee x_{2}\bar{T}_{\partial}, \qquad x_{2} = RGMm [4],$$

$$y_{m} = \bar{x}_{1}\bar{x}_{2}T_{\partial} \vee x_{1}x_{2}\bar{T}_{\partial}.$$

В целом схема, иллюстрирующая логику преобразования операндов, показана на рис. 39.

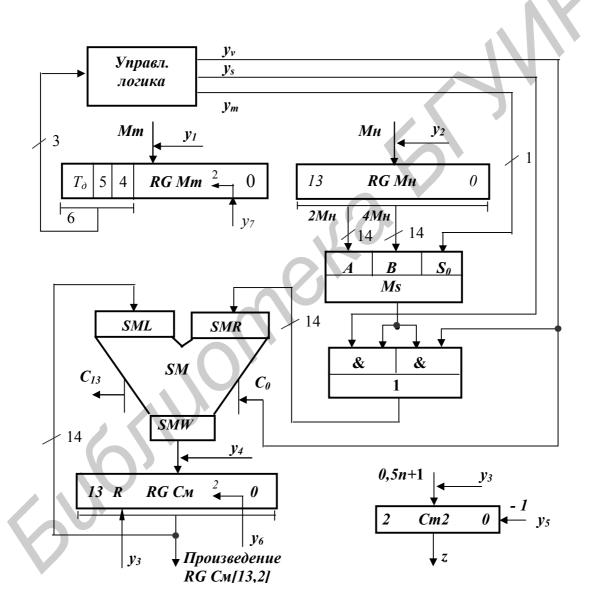


Рис. 39

Процесс умножения чисел в приведенном устройстве интерпретирует микропрограмма:

1)
$$y_1: RG\ Mm[5,0]:=Mm, T_0:=0,$$
 $y_2: RG\ Mh[13,0]:=Mh,$ $y_3: RG\ Cm[13,0]:=00...0, Cm2\ [2,0]:=\frac{n}{2}+1=4,$ 2) $y_4: RG\ Cm[13,0]:=RG\ Cm[13,0]+\ L2\big(RG\ Mh[13,0].00\big),$ $y_5: Cm2\ [2,0]:=Cm2\ [2,0]-1,$ $y_6: RG\ Cm[13,0]:=L2\big(RG\ Cm[13,0].00\big),$ $y_7: RG\ Mm[6,0]:=L2\big(RG\ Mm[6,0].00\big),$ 3) выполнение микрокомано $n.\ 2,\ ec\pi u\ z=0,\ npodoлжить npu\ z=1,$ 4) конеи.

Построенный операционный автомат формирует произведение операндов без анализа сигналов-признаков схемой управляющего устройства. Эту часть функций берет на себя внутренняя «управляющая логика», которая и формирует требуемые сигналы. Однако, если все функции управления возложить на автомат Мили, Мура или микропрограммное УУ, то алгоритм умножения следует вначале представить с помощью ГСА, после этого, используя стандартные методики синтеза или эвристический подход (для схем малой сложности), построить операционное устройство *I-*, *M-* или *IM-*типа.

Итак, в соответствии с таблицей умножения и выполненным примером составим ΓCA для алгоритма умножения по методу Мак-Сорли (рис. 40). Схема операционного автомата, соответствующего данной ΓCA , будет иметь вид, показанный на рис. 41.

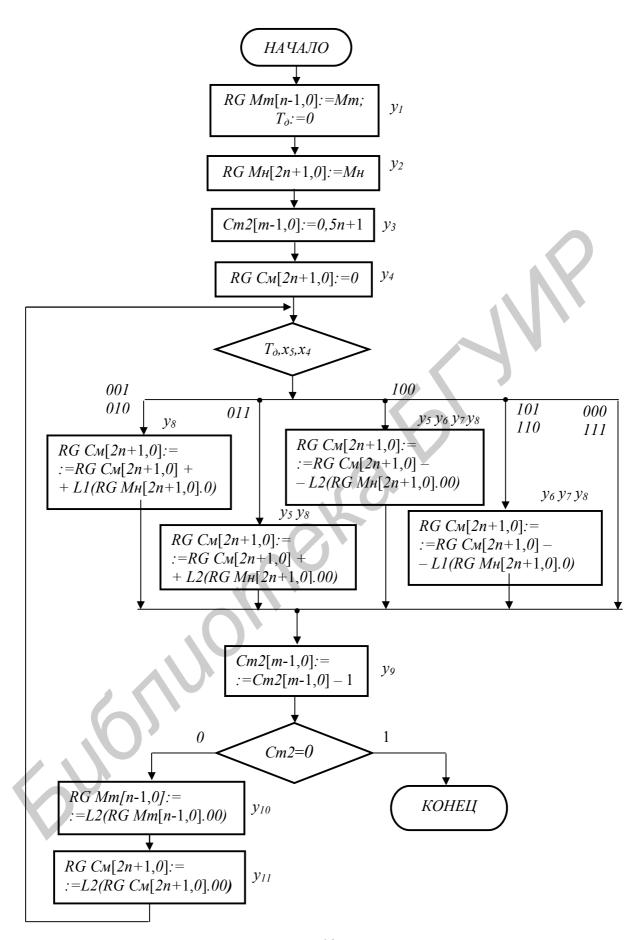
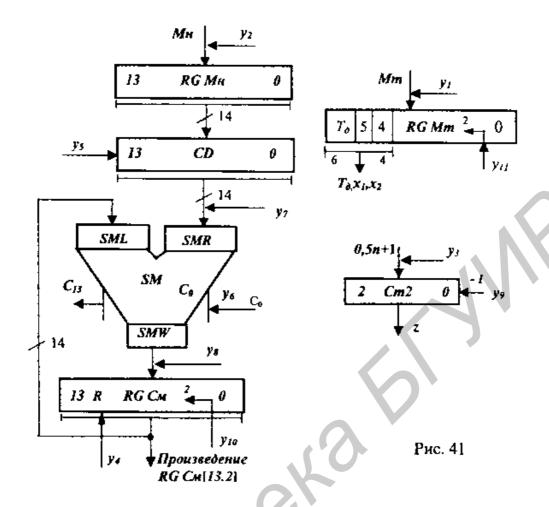



Рис. 40

2.8. Синтез М-автоматов

Как правило, процедура синтеза M-автоматов сводится к проектированию управляемых источников операндов, построению схемы ЛУ комбинационного типа, проектированию схем коммутации результатов вычислений в регистры OA. Обобщенная структура M-автомата имеет вид

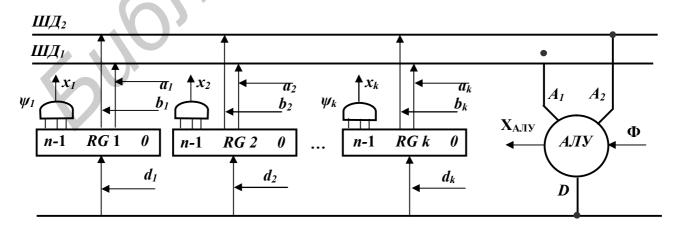


Рис. 42

В общем случае устройства данного типа имеют минимальную аппаратную сложность, однако производительность при этом также оказывается минимальной и равна одной микрокоманде за такт. В отличие от автоматов других типов M-автомат содержит одну обобщенную схему АЛУ, которая позволяет выполнять все микрооперации из множества Φ .

Логические условия в автоматах данного типа вычисляются таким же образом, что и в любой канонической структуре, т.е. соответствующие схемы ψ подключаются к выходам регистров, и, кроме того, схема АЛУ помимо функций обработки данных выполняет дополнительно функции по формированию логических условий.

Рассмотрим этапы синтеза M-автомата на примере построения схемы или устройства умножения по методу Мак-Сорли, т.е. умножение на 2 разряда одновременно начиная с младших разрядов Mm.

Итак, пусть задан алгоритм умножения (табл. 13), а процесс умножения иллюстрирует табл. 14. И пусть исходные значения операндов Mh и Mm равны:

$$\frac{\textit{M}\textit{H}\!=\!110110_2\!\!=\!\!54_{10}\;,\quad \textit{M}\textit{m}\!=\!100011_2\!\!=\!\!35_{10}}{\textit{M}\textit{H}\!\cdot\!\textit{M}\textit{m}\!=\!1890_{10}}$$

Таблица 13

Пара	Допол.	Доп.		
-	ед. из	ед.	Знак	Кратн.
разр. Мт	пред.	в след.	дейст.	Мн.
1711	пары	пару		
00	0	0	нет	0
01	0	0	+	1
10	0	0	+	2
11	0	1	1	1
00	1	0	+	1
01	1	0	+	2
10	1	1	_	1
11	1	1	нет	0

Таблица 14

000000000000	См
000000110110	Мн
100011	Mm
111111001010	$C_{\mathcal{M}}+[M_{\mathcal{H}}]_{\mathcal{J}}$
000011011000	$M H \cdot 2^2$
001000	$Mm \cdot 2^{-2}$
000010100010	См+Мн
001101100000	$M\mu \cdot 2^2$
000010	$Mm \cdot 2^{-2}$
011101100010	См+2Мн
110110000000	$M\mu \cdot 2^2$
000000	$Mm \cdot 2^{-2}$
011101100010	=1890

В соответствии с табл. 13 и примером умножения (табл. 14) построим графсхему алгоритма (рис. 43). При этом этапы синтеза M-автомата будут состоять в следующем.

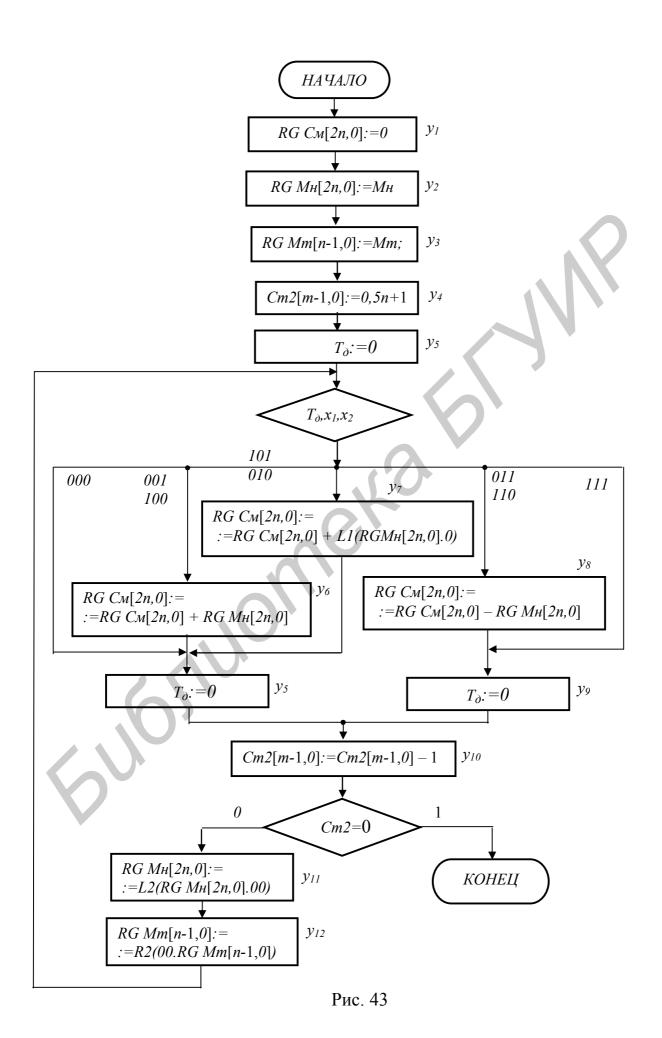
1-й этап – распределение регистров по шинам.

В структуре M-автомата для передачи операндов используются две шины — $III \mathcal{A}_1$ и $III \mathcal{A}_2$. Они соединяются со входами $A \mathcal{I} \mathcal{Y} A_1$ и A_2 соответственно. Регистры устройства $RG_1,...,RG_k$ подключаются к шинам через управляемые выходы. Управление осуществляется с помощью сигналов $a_1,...,a_k$ и $b_1,...,b_k$.

Таким образом, на первом этапе проектирования предполагается разделение множества источников операндов AJV на два подмножества

$$RA_1 = \left\{RG_1, ..., RG_i\right\}$$
 и $RA_1 = \left\{RG_j, ..., RG_k\right\}$.

Эти подмножества должны удовлетворять условиям:


- 1) если регистры RG_i и RG_j являются операндами одной микрокоманды, то они включаются в различные подмножества;
- 2) каждое слово RG_s должно принадлежать хотя бы одному из подмножеств RA_1 или RA_2 и $RA_1 \cup RA_2 = R$;
- 3) подмножества RA_1 и RA_2 формируются таким образом, чтобы суммарные затраты аппаратуры в схемах коммутации операндов были бы минимальными.

Для определения элементов, принадлежащих RA_1 и RA_2 , построим табл.15 микрокоманд ГСА и выполним распределение регистров автомата по шинам. В результате множество регистров разделится на подмножества:

$$RA_1 = \{RG CM\}$$
 и $RA_2 = \{RG MH, RG Mm, RG Cm 2\}$.

2-й этап синтеза М-автомата — определение форматов слов на ШД.

Сформированные подмножества регистров совместим по младшим разрядам. Тогда количество линий в $IIII_1$ и $IIIII_2$ будет определяться максимальным числом разрядов в слове из RA_1 или RA_2 соответственно.

y_m	Микрокоманда	$I\!I\!I\!J\!\!\!\!/_1$	ШД2
<i>y</i> ₁	$RG C_M [12,0] := 0$	_	_
<i>y</i> ₂	RG M H [12,0] := M H	_	Мн
<i>y</i> ₃	$RG\ Mm\ [5,0]:=Mm$	_	Mm
<i>y</i> ₄	$RG\ Cm2\ [2,0]:=0,5n+1=4$	_	0100
<i>y</i> ₅	$T_{o}[0]:=0$	_	_
<i>y</i> ₆	$RG \ CM \ [12,0]:=RG \ CM \ [12,0]+RG \ MH \ [12,0]$	RG См [12,0]	RG Мн [12,0]
<i>y</i> ₇	RG CM [12,0] := RG CM [12,0] + L1(RG MH [12,0].0)	RG См [12,0]	RG Мн [12,0]
<i>y</i> 8	$RG \ CM \ [12,0]:=RG \ CM \ [12,0]+ \ \ $	RG См [12,0]	RG Мн [12,0]
<i>y</i> 9	$T_{o}[0]$:=1	-	_
<i>y</i> 10	$RG\ Cm2\ [2,0]:=RG\ Cm2\ [2,0]-1$	- 1	RG Cm2 [2,0]
<i>y</i> 11	$RG\ MH\ [12,0] := L2(RG\ MH\ [12,0].00)$	-1 \ 1	RG Мн [12,0]
<i>y</i> 12	$RG\ Mm\ [5,0]:=R2(00.RG\ Mm\ [5,0])$		RG Mm [5,0]

Для рассматриваемого примера получим следующие форматы слов:

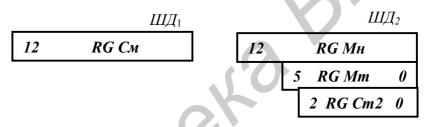


Рис. 44

Таким образом, каждая из шин будет содержать по 13 информационных линий. Очевидно, если число разрядов у одного из регистров оказывается меньше максимального (например в счетчике циклов), то осуществляется совмещение регистров по младшим битам, а при передаче информации по шинам — заполнение свободных разрядов константами 0 и 1.

3 этап синтеза – анализ преобразований в АЛУ.

На данном этапе микрокомандам ΓCA ставятся в соответствие операторы присваивания $A \Pi Y$. Эти операторы характеризуют действия, которые выполняются непосредственно над входной информацией, а не источники или приемники данных. При этом используется ряд соглашений:

1) на входы A_1 и A_2 $A \mathcal{I} \mathcal{Y}$ поступают только прямые коды операндов;

- 2) неопределенный набор входных управляющих сигналов AJV, а следовательно, и неопределенное преобразование в схеме порождают на его выходе нулевое значение;
- 3) младшие разряды выходов $A \mathcal{I} \mathcal{Y}$ соответствуют младшим разрядам приемников результата.

Учитывая данные допущения, составим таблицу соответствия микрокоманд y_m ΓCA умножения и операторов φ_s проектируемого AJV.

			4	
\mathcal{Y}_m	Операторы АЛУ	Прием.	Обоз.	
	$D:=\varphi_s(A_1,A_2)$	RG	φ_s	
<i>y</i> 1	D := 000	RG CM	(φ_1)	-
y_2 y_3	$D:=A_2[12,0]$ $D:=A_2[12,0]$	RG MH RG Mm	$egin{pmatrix} arphi_2 \ arphi_2 \end{matrix}$	
<i>y</i> ₄ <i>y</i> ₅	$D:=A_2[12,0]$ $D:=000, T_0:=0$	$RG\ Cm2$ T_{o}	φ_2	
<i>y</i> ₆	$D:=A_1[12,0]+A_2[12,0]$	RG См	φ_1 φ_3	•
y_7 y_8	$D:=A_1[12,0]+L1 (A_2[12,0].0)$ $D:=A_1[12,0]+\gamma A_2[12,0].0+1$		$\varphi_4 \ \varphi_5$	
<i>y</i> ₉	$D:=0001, (T_o:=1)$	T_{∂} RG Cm2	φ_6	
<i>y</i> ₁₁	$D:=A_2[12,0]+1111$ $D:=L2(A_2[12,0].00)$	RG Мн	$egin{array}{c} oldsymbol{arphi}_{7} \ oldsymbol{arphi}_{8} \end{array}$	
<i>y</i> ₁₂	$D := R2 (00. A_2[12,0])$	RG Mm	φ_9	

Таблица 16

Примечание к табл. 16. Вместо микрокоманды y_I может быть использована запрещенная комбинация сигналов $A \mathcal{I} \mathcal{Y}$. Это дает возможность сформировать нулевой операнд на выходе, а соответствующий сигнал управления (y_I) удалить из ΓCA . Оператор $A \mathcal{I} \mathcal{Y} \varphi_1$ тогда может использоваться для сброса $T_{\mathcal{I}} := 0$.

На этом же этапе синтеза могут быть построены таблицы для выбора операндов AJV (или управления операндами) и приемников результата.

Присвоим регистрам проектируемого устройства номера от 1 до 4:

 $RG\,C\!M = RG_1\,,\; RG\,M\!H = RG_2\,,\; RG\,M\!m = RG_3\,,\; RG\,C\!m^2 = RG_4\,.$ Тогда сигналы управления операндами и результатами вычислений будут иметь состав, указанный в табл. 17, 18.

4-й этап синтеза M-автомата — кодирование микроопераций наборами управляющих сигналов.

На данном этапе микрокоманды $y_m \subset \{Y\}$ исходной ΓCA заменяется наборами управляющих сигналов a_i, b_j, d_k, φ_s (табл. 19).

Таблица 17

<i>Исто</i> опера		Сигнал управления	
ШД1	ШД1 ШД2		b_j
RGСм	_	a_1	- '
_	RGMн	_	b_2
_	RGMm	_	b_3
_	RG Cm2	_	b_4

Таблица 18

Приемник	Сигнал
результата	управления
$D \rightarrow RG_k$	d_k
$D \rightarrow RGCM$	d_1
$D \rightarrow RGM$ н	d_2
$D \rightarrow RGMm$	d_3
$D \rightarrow RG Cm2$	d_4
$D \rightarrow T_{\partial}$	d_5

Таблица 19

\mathcal{Y}_m	a_i	b_j	d_k	$arphi_s$
<i>y</i> ₁	-	1	d_{I}	φ_I
<i>y</i> ₂	-	_	d_2	$arphi_2$
у з	70	-	d_3	φ_2
<i>y</i> ₄	4	_	d_4	$arphi_2$
<i>y</i> ₅		_	d_5	$arphi_{I}$
<i>y</i> ₆	a_1	b_2	d_{I}	φ_3
<i>y</i> ₇	a_1	b_2	d_1	$arphi_4$
<i>y</i> 8	a_1	b_2	d_{I}	$arphi_5$
<i>y</i> 9	_	_	d_5	$arphi_6$
<i>y</i> 10	_	b_4	d_4	$arphi_7$
<i>y</i> 11	_	b_2	d_2	$arphi_8$
<i>y</i> 12	_	b_3	d_3	$arphi_9$

Приведенная в табл. 19 информация может быть использована далее для перекодирования исходной ГСА и построения управляющего автомата.

5-й этап синтеза — составление подмножеств (или классов) эквивалентных операторов.

С целью оптимизации затрат аппаратуры в комбинационном $A\mathcal{I}\mathcal{Y}$ и формализации процесса проектирования ОА множество операторов $\{\varphi_s\}$ разбивается на классы k_1, \ldots, k_j эквивалентных операторов. При этом под эквивалентны-

ми понимают операторы, реализующие в арифметико-логическом устройстве однотипные действия.

Пусть класс k_1 образуют операторы, реализующие функцию установки регистров проектируемого устройства. Список подмножества преобразований, входящих в данный класс, будет иметь вид

$$k_{I} = \begin{cases} \varphi_{I} \\ \varphi_{6} \end{cases} = \begin{cases} D := 00...00 \\ D := 00...01 \end{cases}.$$

В класс k_2 будем включать операторы, которые характеризуют действия, соответствующие сложению чисел в дополнительных кодах

$$k_{2} = \begin{cases} \varphi_{2} \\ \varphi_{3} \\ \varphi_{5} \\ \varphi_{7} \end{cases} = \begin{cases} D := 0 + A_{2}[12,0] + 0 \\ D := A_{1}[12,0] + A_{2}[12,0] + 0 \\ D := A_{1}[12,0] + \overline{A_{2}[12,0]} + 1 \\ D := 0 + A_{2}[12,0] + 11...1 \end{cases}.$$

В остальные классы включаем по одному оператору, так как они характеризуют различные типы действий:

$$k_3 = \{\varphi_4\} = \{D := A_I[12,0] + L1(A_2[12,0].0)\},$$

$$k_4 = \{\varphi_8\} = \{D := L2(A_I[12,0].00)\},$$

$$k_5 = \{\varphi_9\} = \{D := R2(00.A_2[12,0])\}.$$

6-й этап синтеза – построение обобщенных операторов.

На данном этапе для каждого класса эквивалентных операторов $k_1, ..., k_j$ строится обобщенный оператор вида

$$D := B_1 + B_2 + B_3,$$

где B_i – операнды, подаваемые на входы сумматора и вход переноса C_0 .

Рассмотрим класс k_1 . Операторы, включенные в данный класс, предназначены для сброса регистра суммы и управления T_{∂} . На практике оказывается удобным преобразовать структурную схему таким образом, чтобы T_{∂} управлялся сигналами операторов, а функция сброса RG CM реализовывалась при отсут-

ствии других сигналов φ_s . При такой реализации схемы сигнал управления d_5 должен быть удален из табл. 18. Если же триггер дополнительный будет реализован в виде однобитного регистра, то сигнал d_5 сохраняется, а T_{∂} рассматривается как элемент общего поля регистров.

Рассмотрим класс k_2 , предварительно преобразуя оператор φ_7 к виду

$$\varphi_7: D := 11...1 + A_2[12,0] + 0$$
.

После этого обобщенный оператор для класса k_2 может быть представлен суммой

$$D := B_1 + B_2 + B_3$$

где
$$B_1 = \begin{cases} 0, \ ecnu \ \varphi_2 = 1, \\ A_1[12,0], \ ecnu \ \varphi_3, \ \varphi_5 = 1, \\ [-1]_{\partial} = 11...1, \ ecnu \ \varphi_7 = 1; \end{cases}$$

$$B_2 = \begin{cases} A_2[12,0], \ ecnu \ \varphi_2, \ \varphi_3, \ \varphi_7 = 1, \\ -A_2[12,0], \ ecnu \ \varphi_5 = 1; \end{cases}$$

$$B_3 = \begin{cases} 0, \ ecnu \ \varphi_2, \ \varphi_3, \ \varphi_7 = 1, \\ 1, \ ecnu \ \varphi_5 = 1. \end{cases}$$

Для упрощения схемы сдвига в AЛУ можно объединить классы k_3 и k_4 в класс k_6 , предварительно преобразовав оператор φ_8 к виду

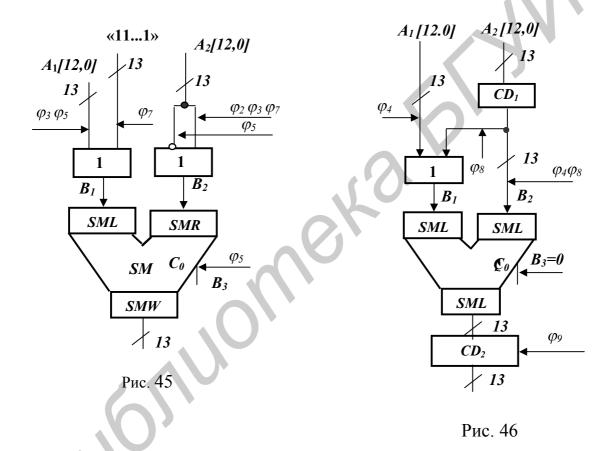
$$k_6 = k_3 \cup k_4 = \begin{cases} \varphi_4 \\ \varphi_8 \end{cases} = \begin{cases} D := A_1[12,0] + L1(A_2[12,0].0) \\ D := L1(A_2[12,0].0) + L1(A_2[12,0].0) \end{cases}.$$

Обобщенный оператор для данного класса будет иметь вид

$$D := B_1 + B_2 + 0$$

где
$$B_{l} = \begin{cases} L1(A_{2}[12,0].0), \text{ если } \varphi_{8} = 1, \\ A_{l}[12,0].0), \text{ если } \varphi_{4} = 1; \end{cases}$$

$$B_{2} = L1(A_{2}[12,0].0), \text{ если } \varphi_{4}, \ \varphi_{8} = 1.$$


Операторы класса k_5 не изменяются, при этом

$$D := B_2 = R_2(00.A_2[12,0])$$
 при $\varphi_9 = 1$.

7-й этап синтеза — построение структурных схем для реализации обобщенных операторов.

Аппаратная реализация класса k_1 очевидна и может быть представлена обычным триггером RS-типа.

В классе k_2 операцию сложения следует реализовать с помощью схемы комбинационного сумматора с двумя входами для слагаемых B_1 и B_2 и входом переноса C_0 для оператора φ_5 . Для формирования дополнительного кода на одном из входов модуля устанавливается блок инверсии (рис.45).

Построим схему для операторов класса k_6 . Она будет содержать модуль комбинационного сумматора и схему сдвигателя CD_1 (рис. 46). Здесь же для выполнения действий класса k_5 на выходе сумматора установим схему сдвигателя CD_2 на 2 разряда вправо за такт. Управление сдвигами в CD_2 осуществляется с помощью сигнала управления φ_9 .

8-й этап синтеза – формирование списка логических условий.

На данном этапе составляется таблица, содержащая строку «перечень усло-

вий» и строку указателей на структурные компоненты OA — источники этих условий (табл. 20). В процессе автоматизированного проектирования процессоров информация о признаках вводится в компьютер и используется для синтеза соответствующих комбинационных схем.

Таблица 20

Перечень условий	x_{∂}	x_1	N (signМн)	
Источник	RG Mm[14]	RG Mm[13]	RG Мн[14]	

9-й этап синтеза — построение обобщенной схемы операционного устройства. На данном этапе объединяют (методом суперпозиции) все подсхемы, реализующие обобщенные операторы, в общую схему АЛУ. При необходимости элементы коммутации в подсхемах заменяются схемами мультиплексирования или устройствами с тремя состояниями на выходе (рис. 47).

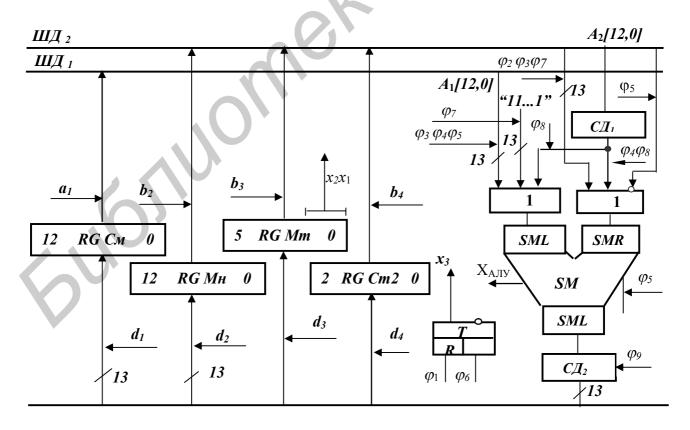


Рис. 47

M-автомат реализует в каждом такте одну микрокоманду граф-схемы алгоритма. Поэтому все совмещенные операторные вершины при синтезе устройства управления должны быть разделены с учетом потактовой работы операционного автомата.

2.9. Синтез *I*-автоматов

Структура операционного автомата I-типа условно может быть разделена на три составные части:

- 1) регистры памяти;
- 2) комбинационные схемы, реализующие функции АЛУ;
- 3) схемы, формирующие признаки результата.

Для получения максимальной производительности структура *I*-автомата не должна вносить ограничений на совместимость микрокоманд, т.е. структура должна обеспечить возможность одновременного выполнения всех функционально совместимых преобразований исходной граф-схемы алгоритма. Такой подход к вычислениям требует разделения комбинационной схемы AJV на подсхемы, выполняющие действия вида

$$RG_i := II_i(RG_1,...,RG_k), i = 1,2,...,n.$$

Поставленному условию удовлетворяет класс устройств, у которых каждый из регистров RG_i обслуживается своей схемой AJIV. Причем каждое $AJIV_i$ должно выполнять только те операторы Φ_i , которые определяют содержимое регистра с номером і. Что касается максимального числа информационных шин І-автомата, то оно определяется возможностью распараллеливания вычислений, задаваемых исходным алгоритмом.

Каноническая структура автомата І-типа имеет вид, показанный на рис. 48.

На практике число используемых информационных шин у схем данного вида, как правило, невелико и составляет величину не более 2–3. В противном случае затраты на проектирование и построение блока АЛУ существенно возрастают.

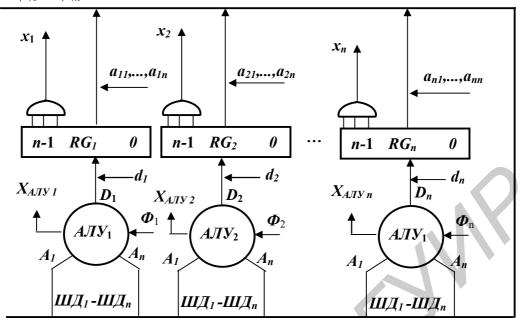


Рис. 48

Операционный автомат I-типа (укрупненно) синтезируется в соответствии со следующими этапами:

1-й этап. Множество микрокоманд, определяемых операторными вершинами ΓCA , разбивается на подмножества Y_1 , ..., Y_n , которые реализуют преобразование над словами:

$$RG_i := \coprod_i (RG_k, ..., RG_i).$$

2-й этап. На подмножествах Y_i выделяются классы эквивалентных операторов для $A\Pi Y_i - K_{ij}$, причем в каждый класс j подмножества i включаются микрокоманды эквивалентного функционального назначения для регистра RG_i .

3-й эman. Для каждого класса j, содержащего не менее двух эквивалентных операторов, строится обобщенный оператор вида

$$D_{ij} := B_1 + B_2 + B_3$$
.

4-й этап. Выполняется построение $A \mathcal{I} \mathcal{Y}_i$ путем суперпозиции всех подсхем, соответствующих обобщенным операторам D_{ij} .

Рассмотрим теперь методику синтеза I-автомата на конкретном примере. Пусть требуется построить устройство, позволяющее выполнять умножение чисел на 2 разряда одновременно, начиная со старших разрядов Mm. Для решения задачи используем ΓCA (рис. 40) со следующим списком микрокоманд:

$$y_1) RGMm[5,0] := Mm,$$
 $y_5) RG Cm[13,0] := RG Cm[13,0] + 2MH,$
 $y_2) RGMh[13,0] := MH,$ $y_6) RG Cm[13,0] := RG Cm[13,0] + 4MH,$
 $y_3) Cm2[2,0] := 0,5n+1,$ $y_7) RG Cm[13,0] := RG Cm[13,0] - 2MH,$
 $y_4) RG Cm[13,0] := 0,$ $y_8) RG Cm[13,0] := RG Cm[13,0] - 4MH,$
 $y_9) Cm2[2,0] := Cm2[2,0] - 1,$
 $y_{10}) RG Cm[13,0] := RG Cm[13,0] \times 2^2.$
 $y_{11}) RG Mm[5,0] := RG Mm[5,0] \times 2^2.$

1-й этап синтеза І-автомата. Декомпозиция списка микрокоманд на 4 подмножества (в соответствии с числом регистров):

2-й этап. Распределение регистров по шинам.

В связи с малой трудоемкостью решаемой задачи выберем двухшинную организацию устройства и выполним распределение регистров по шинам в соответствии с табл. 21. В итоге множество регистров разделится на два подмножества:

$$III_1 = \{RG \ CM\}, \quad III_2 = \{RGMH, RGMM, Cm2\}.$$

При выполнении данного этапа будем учитывать, что использование в схеме числа шин, большего, чем две, предполагает временное совмещение микрокоманд различных типов, например, при выполнении бинарных преобразований следует осуществлять пересылку данных с использованием линий ШД₁ и

 $U\!U\!Z_2$, а по шине $U\!U\!Z_3$ (при необходимости) передавать декрементируемое значение счетчика (или сдвигаемый операнд).

Таблица 21

y_m	Содержание микрокоманды	ШД1	ШД2
y ₁ y ₂ y ₃ y ₄	RG Mm[6,0]:=Mm $RG Mh[13,0]:=Mh$ $Cm2[2,0]:=0,5n+1=4$ $RG Cm[13,0]:=000$	- - - - - -	- - - - - - - - - - - - - - - - - - -
y5 y6 y7 y8 y9 y10 y11	$ \begin{array}{l} RG \ CM[13,0] := RG \ CM[13,0] + L1(RG \ Mh[13,0].0) \\ RG \ CM[13,0] := RG \ CM[13,0] + L2(RG \ Mh[13,0].00) \\ RG \ CM[13,0] := RG \ CM[13,0] + \frac{1}{7} \ L1(RG \ Mh[13,0].0) + 1 \\ RG \ CM[13,0] := RG \ CM[13,0] + \frac{1}{7} \ L2(RG \ Mh[13,0].00) + 1 \\ Cm2[2,0] := Cm2[2.0] - I \\ RG \ CM[13,0] := L2(RG \ CM[13,0].00) \\ RG \ Mm[6,0] := L2(RG \ Mm[6,0].00) \\ \end{array} $	RG CM[13,0] RG CM[13,0] RG CM[13,0] RG CM[13,0] 	RG Мн[13,0] RG Мн[13,0]

3-й эman. Определение форматов слов на IIIД. Сущность этапа ничем не отличается от аналогичного шага синтеза M-автомата.

4-й этап. Анализ преобразований в $AJIV_i$.

Таблица 22

	y_m	Операторы АЛУ _і	Прием.	Обоз.
		$D_i:=\varphi_s(A_1,A_2)$	RG	φ_s
	<i>y</i> ₂	$D_1 := A_1[13,0]$	RG Мн	φ_2
	y_I	$D_2 := A_1[6,0]$ $D_1 := A_2(4,16,01,00)$	RG Mm RG Mm	φ_I
		$D_2 := L2(A_1[6,0].00)$		φ_{11}
	<i>y</i> ₄ <i>y</i> ₅	$D_3 := 000$ $D_3 := A_1[13,0] + A_2[13,0]$	RG См RG См	$arphi_4 \ arphi_5$
	<i>y</i> ₆	$D_3:=A_1[13,0]+L1(A_2[13,0].0)$ $D_3:=A_1[12,0]+ $	RG См RG См	φ_6
	<i>У</i> 7 <i>У</i> 8	$D_3 := A_1[12,0] + \frac{1}{7}LI(A_2[13,0].0) + 1$	RG См	$oldsymbol{arphi}_{7} \ oldsymbol{arphi}_{8}$
	<i>Y10</i>	$D_3:=L1(A_1[13,0].0)$	RG См	$arphi_{10}$
	уз у9	$D_4:=A_1[2,0]$ $D_4:=A_1[2,0]+111$	Cm2 Cm2	$arphi_3$ $arphi_9$
ł		7		, -

Табл. 22 состоит из подтаблиц, число которых равно числу регистров, а следовательно, и числу проектируемых AЛУ. При составлении данных под-

множеств учитывался также тот факт, что процесс выполнения сдвигов на два разряда $L2(A_2[13,0].00)$ в RG C_M реализуется с использованием технологической, «косой» передачи данных в RG C_M плюс аппаратный сдвиг также на один разряд. Выполнение сдвига в RG Mm – $L2(A_1[6,0].00)$ предполагается осуществлять только за счет технологической коммутации, сигнал же управления параллельной ветвью при этом должен быть равен нулю. На этом же этапе составляются таблицы управления источниками операндов и выбора приемников результатов для слов, пересылаемых с выходов AJV (см. табл. 23 и 24).

Для построения таблиц присвоим регистрам ОА следующие номера:

 $RG\ MH:=RG_1; \quad RG\ Mm:=RG_2; \quad RG\ CM:=RG_3; \quad Cm2:=RG_4$

Таблица 23

Таблица	24
---------	----

<i>Исто</i> опера		Сигнал управления
ШД1	ШД2	a_{ij}
RGСм	_	<i>a</i> ₃₁
=	RGM H	a_{12}
_	RGMm	a_{22}
_	Cm2	a_{42}

Приемник результата	Сигнал управления
$D_i \rightarrow RG_k$	d_k
$D_3 \rightarrow RG C_M$ $D_1 \rightarrow RG M_H$	d_3 d_1 d_2
$D_2 \rightarrow RG Mm$ $D_4 \rightarrow Cm2$	d_4

5-й эman. Кодирование микрокоманд наборами управляющих сигналов (см. методику синтеза M-автоматов и табл. 25)

Таблица 25

Уm	a_{i1}	a_{i2}	d_k	$\varphi_{\scriptscriptstyle S}$
<i>y</i> ₁	_	_	d_2	φ_{l}
y_2	_	_	d_1	$arphi_2$
<i>y</i> ₃	_	_	d_4	φ_3
<i>y</i> ₄	_	_	d_3	$arphi_4$
<i>y</i> ₅	a_{31}	a_{12}	d_3	$arphi_5$
<i>y</i> ₆	a_{31}	a_{12}	d_3	$arphi_6$
<i>y</i> ₇	a_{31}	a_{12}	d_3	$arphi_7$
<i>y</i> 8	a_{31}	a_{12}	d_3	$arphi_8$
<i>y</i> 9	_	a_{42}	d_4	$arphi_9$
<i>y</i> 10	a_{31}	_	d_3	$arphi_{10}$
<i>y</i> 11	_	a_{22}	d_2	φ_{11}

Этап построения эквивалентных операторов в данном примере может быть пропущен ввиду малой сложности.

6-й этап. Составление списка обобщенных операторов для схем AJV_i .

$$D_{1} := A_{1}[13,0], \quad ecnu \; \varphi_{2} = 1; \qquad D_{2} := \begin{cases} A_{1}[6,0], \; ecnu \; \varphi_{1} = 1; \\ L1(A_{1}[6,0].0), \; ecnu \; \varphi_{11} = 1; \end{cases}$$

$$D_{3} := B_{1} + B_{2} + B_{3},$$

$$D_{3} := B_{1} + B_{2} + B_{3},$$

$$E_{1} = \begin{cases} A_{1}[13,0], & ecnu \; \varphi_{5}, \; \varphi_{6}, \\ \varphi_{7}, \; \varphi_{8} = 1, \\ L1(A_{1}[13,0].0), \; ecnu \; \varphi_{10} = 1; \end{cases}$$

$$B_{2} = \begin{cases} A_{2}[13,0], & ecnu \; \varphi_{5} = 1, \\ L1(A_{2}[13,0].0), \; ecnu \; \varphi_{6} = 1, \\ \neg A_{2}[13,0], & ecnu \; \varphi_{7} = 1, \end{cases}$$

$$A_{2}[13,0], & ecnu \; \varphi_{7} = 1, \\ \neg L1(A_{2}[13,0].0), \; ecnu \; \varphi_{8} = 1;$$

$$D_{4} := B_{1} + B_{2},$$

$$B_{1} = A_{1}[2.0], \quad ecnu \; \varphi_{3}, \varphi_{9} = 1; \qquad B_{2} = 111, \quad ecnu \; \varphi_{9} = 1.$$

7-й этап. Формирование списка логических условий.

На данном этапе составляется таблица, содержащая строку «перечень условий» и строку указателей на структурные компоненты OA — источники этих условий. Сущность этапа ничем не отличается от методики, рассмотренной выше при синтезе M-автомата.

8-й этап. Построение схем AJV_i на основе обобщенных операторов.

На рис. 49 приведена реализация $AJJV_1$ и $AJJV_2$. В первой схеме вычислитель практически отсутствует и состоит только из схемы коммутации MH в регистр. Сигнал управления записью в RGMH при этом может быть интерпретирован как микрооперация умножения на единицу и заменен на оператор φ_2 .

Второе AJJV состоит из сдвигателя, предназначенного для сдвига множителя на два разряда за счет технологической «косой» передачи. Особенностью $AJJV_1$ и $AJJV_2$ является то, что обе схемы имеют один и тот же источник данных. В связи с этим, невзирая на подключение одного и другого AJJV к $IIIJ_2$, каждый из входов AJJV имеет первый порядковый номер.

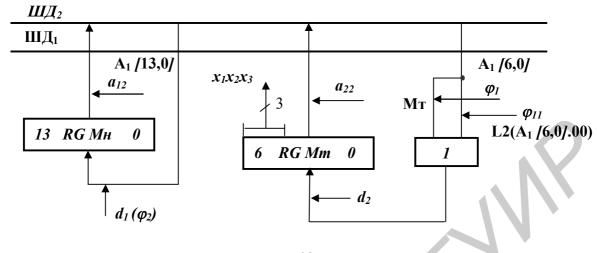


Рис. 49

Схема, приведенная на рис. 50, реализует схемотехнику $AЛV_3$. Здесь микрооперация сдвига регистра RG CM также осуществляется за счет «косой» (технологической) передачи операнда на вход логического элемента 2ИЛИ. Сдвиг множимого на один разряд выполняется аналогично, а в случае необходимости — аппаратно (дополнительно) еще на один разряд влево.

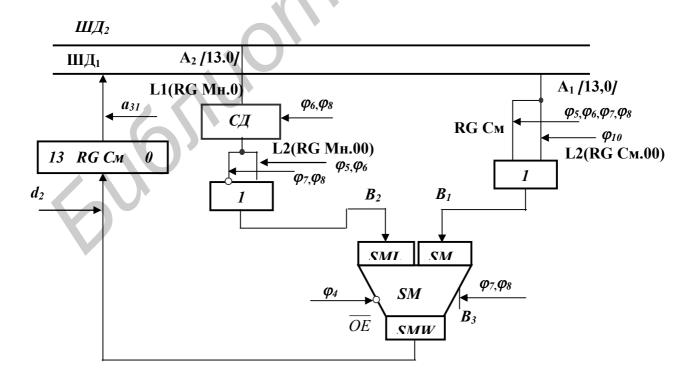


Рис. 50

Рис. 51 поясняет принцип функционирования $AJIV_4$. В данной схеме декрементирование содержимого регистра Cm2 осуществляется путем сложения текущего наполнения счетчика и дополнительного кода числа «-1».

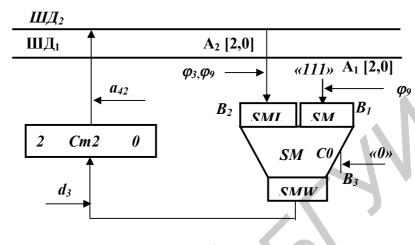


Рис. 51

2.10. Структурная организация и синтез ІМ-автоматов

Рассмотренные выше два класса OA обладают диаметрально противоположными свойствами: I-автоматам присуща максимальная производительность при наибольшей сложности схемы, M-автоматам — минимальная производительность при наименьших затратах аппаратуры. Следует ожидать, что между этими двумя классами структур будут существовать варианты OA, обладающие промежуточными свойствами. Эти структуры при проектировании выделяют в особый класс — класс так называемых IM-автоматов.

IM-автоматы – это операционные устройства, структурная организация которых вносит определенные ограничения на совместимость микрокоманд, однако позволяет выполнить за такт более одного преобразования функциональной микропрограммы.

Структура ІМ-автомата (укрупненно) порождается следующим образом.

Во-первых, аналогично, как и для M-автомата, определяются все операторы, реализуемые в комбинационных схемах AJV.

Во-вторых, определяются классы операторов, эквивалентных в смысле выполняемых ими функций.

В-третьих, в состав OA включаются комбинационные схемы AJV, реализующие определенные совокупности эквивалентных или единый, обобщенный оператор.

Таким образом, IM-автоматы можно рассматривать как композицию из k M-автоматов, взаимодействующих с общим полем регистров. Исходя из этого, синтез автоматов среднего класса сводится к разбиению всего множества микрокоманд на k подмножеств и синтезу k M-автоматов, реализующих функции данных подмножеств.

Проведенный анализ операций в ОА показывает, что большинство вычислительных алгоритмов в компьютерной технике базируется на отработке следующих трех групп основных операций:

- 1) сложение в дополнительном или обратном коде;
- 2) сдвиг операнда на i разрядов;
- 3) логическое преобразование.

В связи с этим при построении IM-автоматов структура устройства, как правило, будет содержать комбинационные схемы $A\mathcal{I}Y_1$ и $A\mathcal{I}Y_2$, реализующие функции преобразования соответственно двух и одного операнда:

$$D_1 \coloneqq \Phi_1\Big(A_1,A_2\Big), \quad D_2 \coloneqq \Phi_2\Big(A_3\Big).$$

Обобщенная структурная схема рассматриваемого автомата представлена на рис. 52. В данной схеме a_i , b_j , c_k — это микрооперации выбора операндов; Φ_1 , Φ_2 — подмножества операторов, выполняемых в схемах $A\mathcal{I}Y_1$, $A\mathcal{I}Y_2$; d_q , e_u — сигналы управления приемниками результатов, сформированных на выходах $A\mathcal{I}Y_1$ или $A\mathcal{I}Y_2$. Очевидно, что максимальная производительность IM-автомата определяется числом комбинационных $A\mathcal{I}Y$ в проектируемой структуре. Как правило, данный параметр не превышает двух микрокоманд за такт машинного

времени. Этапы синтеза автомата IM-типа во многом повторяют этапы синтеза рассмотренных выше M-, I-структур.

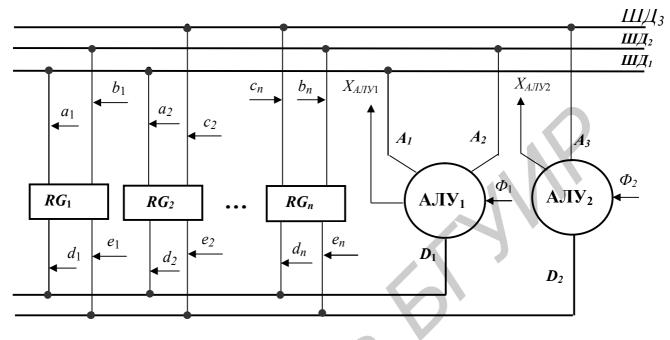


Рис. 52

Первый этап заключается в составлении списка микрокоманд, выполняемых в OA. На данном этапе строится ΓCA , и все операторные вершины алгоритма отмечаются сигналами y_i . После этого формируется список, в который включаются преобразования, указанные в операторных вершинах.

 $Ha\ втором\ этапе\ в$ зависимости от типа выполняемой микрокоманды и модифицируемого числа операндов множество микрокоманд Y разбивается на два подмножества. В первое Y_1 включаются бинарные преобразования, а регистры-источники операндов данного подмножества закрепляются за шинами $UU\mathcal{I}_1$ и $UU\mathcal{I}_2$. Во второе подмножество Y_2 включаются унарные преобразования, а регистры этого подмножества закрепляются за $UU\mathcal{I}_3$ (табл. 26, 27).

Таблииа 26

	\mathcal{Y}_m	Микрокоманда	ШД1	ШД2
Y_1	<i>y</i> ₅	RG CM [14,0]:=RG CM [14,0]+RG MH [14,0]	RG Cm	RG Мн

	\mathcal{Y}_m	Микрокоманда	ШД3
<i>Y</i> ₂	<i>y</i> 10	$RG \ CM \ [14,0] := L1 (RG \ CM \ [14,0].0)$	RG См

В соответствии с принятой концепцией проектирования, т.е. с учетом разбиения множества Y на два подмножества, в исходную ГСА могут быть внесены коррективы, направленные на совмещение выполняемых действий.

 $Ha\ mpemьe M\ этапе\ определяется разрядность слов, передаваемых на входы <math>A_1$ и $A_2\ A J V_1$ и вход $A_3\ A J V_2$. При этом принимается соглашение о совмещении регистров по младшим разрядам и выборе разрядности шин OA равной разрядности регистра максимальной длины.

	Мин	cpo-	Преобразование сл	ов в АЛУ1
	Обознач.			
	команла			оператор
<i>T</i>	<i>y</i> ₄	$D_1 := A_1[14, 0]$	$[0] + A_2[14,0]$	$oldsymbol{arphi}_8$
1	10			
•				

Таблица 29

	Мин	ро- Преобразование сло	в в АЛУ2
	Обознач		
	команла		опе n ато n
Y_2	<i>y</i> ₁₂	$D_2 := L2(A_3[14,0].00)$	$arphi_{19}$
1 2			

Y ₁

Таблицы для выбора источников операндов и управления приемниками результата составляются с учетом номеров регистров, предварительно закрепленных за структурными элементами схемы. Пусть RG C^q имеет обозначение RG_1 , RG $Mm - RG_2$, RG $Mn - RG_3$, RG $Cm - RG_4$, тогда таблицы управления операндами могут быть представлены в виде:

Таблица 30

Таблица 31

1	очник андов	Сигнал управления			
ШДі	ЩДг	ЩДз	ai	bj	c _k
RGCM	RGМн	_	a ₄	b ₃	-

Приемник результата	Сигнал управлен.		
RG,	d _q e _u		
RG	d_4		

На пятом этапе составляется таблица кодировання микрокоманд сигналами управления:

$$y_m = f(a_i, b_j, c_k, d_q, e_u, \varphi_j).$$

Таблица 32

Микро- операция	Сигнал управления						
Уm	a;	bj	Ck	d_q	eu	φ_s	

На *шестом этапе* определяются классы эквивалентных операторов, что позволяет в ряде случаев оптимизировать схемы коммутации операндов.

На седьмом этапе для подмножеств эквивалентных операторов строятся обобщенные операторы, содержащие слагаемые $B_1 - B_3$. Здесь же формируются подсхемы для реализации операторов D_{ij} :

$$D_{i1} := B_1 + B_2 + B_3; \quad D_{i2} := B_1.$$

Управление операндами B осуществляется с помощью сигналов φ_s – операторов A/IV.

Восьмой этап состоит в формировании списка логических условий. При этом составляется таблица, содержащая строку «перечень условий» и строку указателей на структурные компоненты ОА – источники этих условий.

Например

Таблица 33

Перечень условий	•		N (signМн)	
Источник RG Mm[n]	RG Mm(14)	RG Mm[13]	RG Mu[14]	į

На девятом этапе строится структурная схема *IM*-автомата путем суперпозиции подсхем, соответствующих обобщенным операторам *AJIV*₁ и *AJIV*₂.

Десятый этап синтеза (при необходимости) будет состоять в коррекции ГСА с учетом всех изменений, полученных в ходе проектирования вычислительного устройства. В целом же на каждом из этапов возможен возврат на предыдущие этапы для внесения коррективов, обусловленных общим ходом синтеза схемы.

2.11. Использование ЗУ в структуре операционного устройства и класс S-автоматов

В некоторых операционных устройствах преобразования выполняются над большим числом внутренних слов. Примером такой системы является процессор ввода-вывода, используемый как периферийный по отношению к центральному. Для снижения стоимости устройств данного вида регистровая память ОА заменяется оперативным ЗУ, которое обеспечивает в текущий момент времени доступ к любой из ячеек. Операционные автоматы данного вида получили название S-автоматов. Типичная структура S-автомата показана на рис. 53.

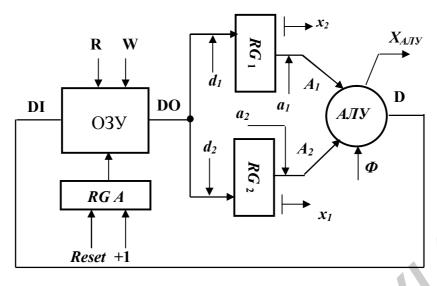


Рис. 53

O3V операционного устройства обеспечивает хранение $N=2^m$ n-разрядных слов по адресам $0,\ 1,\ 2,\ ...,\ 2^m-1$. Обращение к O3V инициируется сигналами чтения: DO := O3V[A] и записи: O3V[A] := D[AJV], где A – адрес памяти. Регистры RG_1 и RG_2 используются для хранения двух операндов, участвующих в исполняемых микрокомандах.

Цикл функционирования автомата разделяется на последовательность четырех действий:

- 1) чтение из O3V первого операнда: $RG_1[n-1,0] := O3V[A]$, $MEM\ R/\overline{W} = 1$;
- 2) чтение из O3V второго операнда: $RG_2[n-1,0] := O3V[A]$, $MEM\ R/\overline{W} = 1$;
- 3) выполнение преобразования в $A \Pi Y$: $D[A \Pi Y] := \varphi_m(RG_1, RG_2)$;
- 4) запись результата в память: O3V[A] := D[AJV].

Комбинационная схема AJV S-автомата строится так же, как и у M-автомата, а быстродействие определяется длительностью цикла обращения к памяти и временем задержки в арифметико-логическом устройстве.

C целью повышения производительности на некоторых операциях в структуру S-автомата иногда включают дополнительные регистры и связи. При этом результаты промежуточных вычислений могут размещаться во вновь введенных регистрах взамен существенно более медленнодействующего O3V.

Пример. Пусть требуется построить OA, предназначенный для изменения порядка следования элементов некоторого массива на противоположный.

Для решения поставленной задачи построим граф-схему вычислений вида рис. 54.

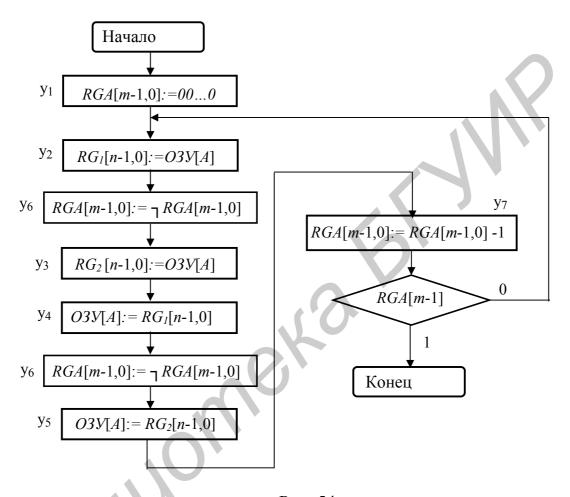


Рис. 54

По данной ΓCA выполним синтез S-автомата в соответствии с алгоритмом проектирования *автомата М*-типа. При этом, учитывая малую сложность процесса проектирования, построим унифицированную табл. 34, присвоив регистру адреса третий номер: $RGA[m-1,0] = RG_3$.

Схема автомата, формируемая в соответствии с таблицей синтеза, может быть представлена в виде рис. 55.

В задачах большей сложности при синтезе OA необходимо использовать (или повторить) все принципиальные моменты этапов проектирования, соответствующие ветствующие формированию структур M-типа.

Таблица 34

y_m	Микрокоманда	A_1	A_2	$D:=\varphi(A_1A_2)$	$D \rightarrow RG_k$	φ_m, a_i, b_j
y ₁ y ₂ y ₃ y ₄ y ₅ y ₆ y ₇	RGA[m-1,0]:=000 $RG_1[n-1,0]:=O3V[A]$ $RG_2[n-1,0]:=O3V[A]$ $O3V[A]:=RG_1[n-1,0]$ $O3V[A]:=RG_2[n-1,0]$ $RGA[m-1,0]:=_{\uparrow}RGA[m-1,0]$ RGA[m-1,0]:=RGA[m-1,0]+1	- - RG ₁ - RGA RGA		$D:=000$ $D:=A_1[n-1,0]$ $D:=A_2[n-1,0]$ $D:= A_1[n-1,0]$ $D:=A_1[n-1,0] + 1$	RGA	d_3 R, d_1 R, d_2 a_1, φ_4, W a_2, φ_5, W a_3, φ_6, d_3 a_3, φ_7, d_3

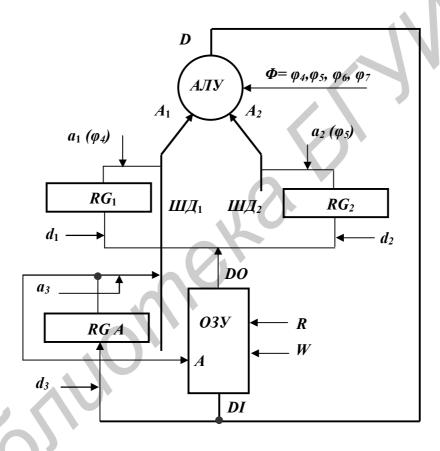


Рис. 55

Рассмотренные методики синтеза операционных автоматов в чистом виде, как правило, не применяются. Основные идеи, изложенные в данном методическом пособии, используются для автоматизированного проектирования микропроцессоров, микроконтроллеров и других БИС, ориентированных на сложные вычисления по разветвленным алгоритмам.

ЛИТЕРАТУРА

- 1. Майоров С.А., Новиков Г.И. Структура электронных вычислительных машин. Л.: Машиностроение, 1979. –384 с.
- 2. Проектирование цифровых систем на комплектах микропрограммируемых БИС // С.С. Булгаков и др.; Под ред. В.Г. Колесникова. М.: Радио и связь, 1984.-265 с.

Учебное издание

Кобяк Игорь Петрович

ПРОЦЕССОРЫ КОМПЬЮТЕРНЫХ СИСТЕМ. СИНТЕЗ ОПЕРАЦИОННЫХ АВТОМАТОВ

Методическое пособие по курсовому и дипломному проектированию по ТиП ЭВМ и СиФО ЭВМ для студентов специальности 40 02 01 «Вычислительные машины, системы и сети» дневной формы обучения

Редактор Н.А. Бебель Корректор Е.Н. Батурчик

Подписано в печать 26.02.2003. Печать ризографическая.

Уч.-изд. л. 4,1.

Формат 60х84 1/16. Гарнитура «Таймс». Тираж 75 экз. Бумага офсетная. Усл.печ. л. 5,0. Заказ 692.

Издатель и полиграфическое исполнение:

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники». Лицензия ЛП № 156 от 30.12.2002. Лицензия ЛП № 509 от 03.08.2001. 220013, Минск, П. Бровки, 6.