ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ КАК СРЕДСТВО АВТОМАТИЗИРОВАННОЙ ПОДГОТОВКИ РАСПИСАНИЯ УЧЕБНЫХ ЗАНЯТИЙ

Нестеренков С. Н., Рак Т. А., Шатилова О. О.

Отдел информационных технологий центра информатизации и инновационных разработок, кафедра вычислительных методов и программирования,

Белорусский государственный университет информатики и радиоэлектороники Минск, Республика Беларусь

E-mail: {nsn, tatianarak, shatilova}@bsuir.by

Грамотно составленное расписание занятий, учитывающее специфику учебного процесса является основной задачей учебного заведения. До сих пор не создано практически ни одного решения этой глобальной задачи.

Введение

На данный момент на рынке есть масса программных продуктов, реализующих автоматическое составление расписания (1С: Автоматизированное составление расписания. Университет, Ректор-ВУЗ и т.д.), но, к сожалению, они не всегда удовлетворяют тем требованиям и ограничениям, которые предъявляются к расписанию в конкретном учебном заведении, либо имеют достаточно высокую стоимость. Эти продукты имеют обширные базы информации, которая анализируется и по которой и составляется расписание, но этот процесс является трудоемким и ресурсозатратным. Для решения подобной задачи необходимо внедрять алгоритмы, учитывающие накопленный опыт и человеческий фактор.

I. Постановка задачи

Генетические алгоритмы рассчитаны на то, что они совершенствуют объекты – потомки по результатам исследования предков. Поэтому необходимо накопить базу составленных расписаний, каждое из которых должно содержать о номере группы, название предмета, форме учебного занятия, время проведения, неделя, информация о подгруппах, преподавателе и аудитории.

II. Алгоритм

Далее выполняются следующие шаги:

- 1. Проверяются существующие группы, проверяется наличие ограничений на проведение занятия в указанное время. Если ограничений нет, то переходим на шаг 2.
- 2. Проверяется база предметов и наличие конкретного предмета у заданной группы, исследуются ограничения на проведение занятия, и, если все хорошо, переходим к шагу 3.
- 3. Проверяем информацию о возможности проведения конкретным преподавателем заданного занятия по дисциплине в указанное время.
- 4. Считывая ID аудитории, проверяем возможность проведения указанного занятия

- по дисциплине, а также ее занятость в выбранное время.
- 5. Определяем количество подгрупп и часов по дисциплине и для каждой из них выполняем следующие шаги:
 - 5.1. Проверяем занятость преподавателя, аудитории, дисциплины и времени. Если все хорошо, то переходим на следующий шаг.
 - 5.2. Помещаем в базу новую запись расписания.
 - 5.3. Проверяем, является ли занятие последним в учебном дне, если нет, то устанавливаем значение времени на следующую пару, определяем ограничения для выбранной аудитории, дисциплины, преподавателя и группы и, если их нет, то идем далее.
 - 5.4. Возвращаемся к шагу 5.

После выполнения всех этих итераций в базе формально хранится расписание, которое можно представить в любой выходной форме.

III. Вывод

В ходе выполнения вышеизложенного алгоритма можно получить расписание, близкое к оптимальному, и пригодное для ручной доработки в случае необходимости.

IV. Список литературы

- 1. Гаврилова, И. В., Масленникова, О. Е. Основы искусственного интеллекта / И. В. Гаврилова, О. Е. Масленникова // Издательство: ФЛИНТА, 2013. 282 с.
- Астахова, И. Ф. Разработка информационной системы построения расписания // Математика. Образование. Экология. Гендерные проблемы.: Материалы межд. конф. / Москва, 2001. т. 2. С. 287–290.
- Нестеренков, С. Н. Адаптивный поиск вариантов расписания с использованием модифицированного генетического алгоритма / С. Н. Нестеренков // Вести Института современных знаний – 2015. – № 2 (63). – С. 67–74.
- Нестеренков, С. Н. Модель построения расписания на основе прецедентов / С. Н. Нестеренков // Информатизация образования — 2015. – № 1. – С. 61–73.