АНАЛИЗ КРИСТАЛЛИЧЕСКОГО РАСЩЕПЛЕНИЯ МУЛЬТИПЛЕТОВ ИОНА \Pr^{3+} В $KY(WO_4)_2$ С УЧЕТОМ ВЛИЯНИЯ ВОЗБУЖДЕННЫХ КОНФИГУРАЦИЙ

Фомичева Л.А. 1 , Корниенко А.А. 2 , Дунина Е.Б. 2 , Прусова И.В. 3

¹ Белорусский государственный университет информатики и радиоэлектроники, 220013 РБ, Минск, ул. П.Бровки, 6, e-mail: Fomicheva_L_A@mail.ru

² Витебский государственный технологический университет, 210035 РБ, Витебск, Московский пр., 72, e-mail: A_A_Kornienko@mail.ru

³ Белорусский национальный технический университет, 220013 РБ, Минск, пр. Независимости, 65, e-mail: prusova@bntu.by

Выполнен анализ кристаллического расщепления мультиплетов иона Pr³⁺ в KY(WO4)₂ с учетом влияния возбужденных конфигураций противоположной четности $4f^{N-1}5d$ и конфигурации с переносом заряда. Такой подход позволяет значительно улучшить описание мультиплетов сравнению с приближением штарковской структуры ПО слабого конфигурационного взаимодействия, a также дает возможность основе экспериментальных данных по штарковской структуре определить параметры ковалентности и параметры кристаллического поля нечетной симметрии.

Существенное влияние на спектроскопические характеристики лантаноидов оказывают возбужденные конфигурации. Однако единого подхода к учету влияния возбужденных конфигураций не существует. Так, например, в работе [1] предлагается использовать гамильтониан спин-коррелированного кристаллического поля, а работах [2, 3] предлагают вести расчеты с учетом влияния возбужденной 4бор-конфигурации. Но при этом в расчет не берут вклад от кристаллического расщепления мультиплетов, который дают возбужденные конфигурации противоположной четности и эффекты ковалентности, но именно эти дают определяющий возбужденные конфигурации вклад В интенсивности межмультиплетных переходов, что является важной практической составляющей данных исследований.

Для улучшения описания штарковской структуры нами предлагается использовать модифицированную теорию кристаллического поля [4, 5]. В этой теории учитывается влияние возбужденных конфигураций противоположной четности и эффектов ковалентности. Применение модифицированной теории позволяет на основе анализа экспериментальных данных по кристаллическому расщеплению мультиплетов получить информацию о параметрах кристаллического поля нечетной симметрии (ранее считалось, что эти параметры недоступны для экспериментального определения) и о параметрах ковалентности, которые обычно определялись только методами двойного электронноядерного резонанса.

В данной работе модифицированная теория кристаллического поля применена для описания штарковского расщепления мультиплетов иона Pr^{3+} в $KY(WO_4)_2$. Экспериментальные данные [6] в этом случае хорошо согласуются с теоретическими.

Для описания штарковской структуры мультиплетов в приближении слабого конфигурационного взаимодействия обычно используют гамильтониан [7]:

$$H_{cf} = \sum_{k,q} B_q^k C_q^k \ . \tag{1}$$

Здесь B_q^k — параметры кристаллического поля, C_q^k — сферические тензоры, действующие на угловые переменные f-электронов.

Для учета влияния возбужденных конфигураций на штарковскую структуру кристаллических систем, активированных f-элементами, расчеты можно выполнять в приближении промежуточного и сильного конфигурационного взаимодействия [8]. Однако для некоторых оксидных систем, влияние возбужденных конфигураций настолько сильное, что для его учета необходимо использовать гамильтониан, полученный в приближении аномально сильного конфигурационного взаимодействия [4, 5]:

$$H_{cf} = \sum_{k,q} \left\{ B_q^k + \left(\frac{\Delta_d^2}{\Delta_d - E_J} + \frac{\Delta_d^2}{\Delta_d - E_{J'}} \right) \widetilde{G}_q^k(d) + \sum_i \left(\frac{\Delta_{ci}^2}{\Delta_{ci} - E_J} + \frac{\Delta_{ci}^2}{\Delta_{ci} - E_{J'}} \right) \widetilde{G}_q^k(c) \right\} C_q^k$$
(2)

Здесь Δ_d и Δ_{ci} — энергии возбужденной конфигурации противоположной четности типа $4f^{N-1}5d$ и конфигурации с переносом заряда соответственно; $\widetilde{G}_{q}^{k}(d)$, $\widetilde{G}_{q}^{k}(c)$ параметры, задающие величину вкладов соответствующих возбужденных конфигураций. Величину вкладов возбужденной конфигурации противоположной четности $4f^{N-1}5d$ в \widetilde{G}_q^k можно оценить по формуле [9]:

$$\widetilde{G}_{q}^{k}(d) = -\frac{2k+1}{2\langle f \| C^{k} \| f \rangle} \sum_{p',p''t',t''} \left(-1\right)^{q} \begin{pmatrix} p' & p'' & k \\ t' & t'' & -q \end{pmatrix} \times \left\{ p' & p'' & k \\ f & f & d \right\} \langle f \| C^{p'} \| d \rangle \langle d \| C^{p''} \| f \rangle \frac{B_{t'}^{p'}(d)}{\Delta_{d}} \frac{B_{t''}^{p''}(d)}{\Delta_{d}} , \tag{3}$$

где $\langle f \| C^k \| f \rangle, \langle f \| C^{p'} \| d \rangle$ – приведенные матричные элементы сферических тензоров, $\begin{pmatrix} p' & p'' & k \\ t' & t'' & -a \end{pmatrix}, \begin{pmatrix} p' & p'' & k \\ f & f & d \end{pmatrix} - 3$ ј и 6j коэффициенты векторного сложения углового момента, $B_{t'}^{p'}(d), B_{t''}^{p''}(d)$ – параметры кристаллического поля нечетной симметрии.

Величина вкладов в \widetilde{G}_q^k от процессов с переносом заряда задается выражением [10]:

$$\widetilde{G}_q^k(c) = \sum_b \widetilde{J}^k(b) C_q^{k^*}(\Theta_b, \Phi_b). \tag{4}$$

 $\widetilde{G}_q^k(c) = \sum_b \widetilde{J}^k(b) C_q^{k^*}(\Theta_b, \Phi_b) \,. \tag{4}$ Здесь суммирование осуществляется по лигандам ближайшего окружения; Θ_b , Φ_b сферические углы, фиксирующие направление на лиганд b.

Для расчета параметров $\widetilde{J}^k(b)$ удобно использовать приближенные выражения [11]:

$$\widetilde{J}^{2}(b) \approx \frac{5}{28} [2\gamma_{of}^{2} + 3\gamma_{ff}^{2}],
\widetilde{J}^{4}(b) \approx \frac{3}{14} [3\gamma_{of}^{2} + \gamma_{ff}^{2}],
\widetilde{J}^{6}(b) \approx \frac{13}{28} [2\gamma_{of}^{2} - 3\gamma_{ff}^{2}],$$
(5)

где γ_{if} $(i=\sigma,\pi)$ — параметры ковалентности соответствующие перескоку электрона из iоболочки лиганда в f-оболочку лантаноида.

При нормальных условиях ${\rm KY}({
m WO_4})_2$ имеет пространственную группу симметрии C_{2h}^6 (C2/c) (a₀=10.64 Å, b₀=10.35Å, c₀=7.54Å) [12]. Ион празеодима замещает ион иттрия, который в ближайшем окружении имеет восемь ионов кислорода — локальная симметрия C_2 . Для локальной симметрии C_2 при расчетах в приближении слабого конфигурационного взаимодействия гамильтониан (1) имеет девять параметров кристаллического поля B_q^k . При расчетах в приближении аномально сильного конфигурационного взаимодействия (2) дополнительно появляются шесть параметров нечетного кристаллического поля, параметры Δ_{ci} , соответствующие энергии конфигурации с переносом заряда, параметры ковалентности γ_{of} и γ_{nf} . Расчеты в приближении слабого, промежуточного и сильного конфигурационного взаимодействия не позволили получить хорошего согласия теории с экспериментом. Поэтому были выполнены расчеты в приближении аномально сильного конфигурационного взаимодействия (2).

Т.о., наилучшее описание штарковского расщепления мультиплетов иона \Pr^{3+} в монокристалле $KY(WO_4)_2$ достигается с помощью модифицированного гамильтониана кристаллического поля, полученного в приближении сильного конфигурационного взаимодействия. В этом гамильтониане учитывается, что возбужденные конфигурации $4f^{N-1}5d$ и конфигурации с переносом заряда имеют существенно разные энергии. Полученные результаты позволяют утверждать, что необходимо учитывать как влияние конфигураций противоположной четности, так и влияние конфигураций с переносом заряда.

В результате описания кристаллического расщепления мультиплетов иона празеодима также получены параметры четного и нечетного кристаллического поля и параметры ковалентности.

- [1] J.R.G. Thorne, M. Jones, C.S. McCaw, K.M. Murdoch, R.G. Denning and N.M. Khaidukov. J. Phys.: Condens. Matter 11, 7851 (1999)
- [2] M.D. Faucher, P.A. Tanner, C.S.K. Mak. J. Phys. Chem. 108, 5278 (2004)
- [3] O.K. Moune, M.D. Faucher, N. Edelstein. J. Lumin. 96, 51 (2002)
- [4] E.B. Dunina, A.A. Kornienko, L.A. Fomicheva. Cent. Eur. J. Phys. 6, 407 (2008)
- [5] А.А. Корниенко, Е.Б. Дунина, Л.А. Фомичева. Оптикаиспектроскопия 116, 739 (2014)
- [6] V.S. Mironov, L.E. Li. J. Alloys Comp. 279, 83 (1998)
- [7] B.G. Wybourne. Spectroscopic Properties of Rare Earths. N.Y., London, Sydney: John Wiley and Sons, Inc. (1965) 236 p.
- [8] А.А. Корниенко. Теория спектров редкоземельных ионов в кристаллах. ВГУ, Витебск. (2003) 128с
- [9] А.А. Корниенко, Е.Б. Дунина. Письма в ЖЭТФ **59**, 385 (1994)
- [10] А.А. Корниенко, А.А. Каминский, Е.Б. Дунина. ЖЭТФ 116, 2087 (1999)
- [11] А.А. Корниенко, Е.Б. Дунина. Опт. и спектр. 97, 75 (2004)
- [12] P.V. Klevtsov, L.P. Kozeeva. Докл. Акад. Наук СССР 185, 571 (1969)