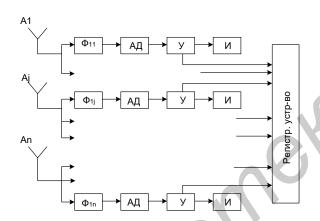
## ПРИЁМНИК РАДИОТЕХНИЧЕСКОЙ РАЗВЕДКИ СТАНЦИИ РЭП


Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Сенюк В.О.

Матюшков А. Л. – к.т.н., доцент

Для повышения эффективности радиоэлектронного подавления (РЭП) при создании умышленных помех необходимо правильно оценить тактическую ситуацию, т.е. определить расположение радиоэлектронных средств (РЭС) и их технические параметры. Для этого используют устройства радиотехнической разведки (РТР). Устройства РТР служат для обнаружения сигналов радиосистем, анализа их параметров и пеленгации источников. На данный момент наиболее распространены РЭС диапазона ультракоротких волн (УКВ). Для их эффективного обнаружения необходимо использовать многоканальные приёмники УКВ диапазона.

Параллельный по частоте поиск сигналов осуществляется с помощью многоканального приемника прямого усиления (рисунок 1). В данном случае УКВ диапазон разведуемых частот  $\Delta f_p$  (30...108 МГц) разделяется системой полосовых фильтров на ряд поддиапазонов, реализуя беспоисковое определение частоты. Соответственно, уменьшается вероятность пропуска цели. Время анализа уменьшается за счет разбиения диапазона рабочих частот и детектирования сигналов в каждом поддиапазоне отдельно. Полосы пропускания фильтров примыкают друг к другу так, как показано на рисунке 2. Ширина полосы пропускания фильтра  $\Delta F_{\varphi}$  обратно пропорциональна количеству каналов n и при идентичности каналов  $\Delta F_{\varphi} = \Delta f_p/n$ .



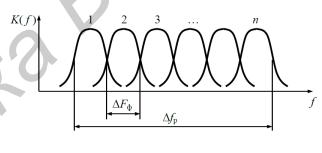



Рис. 1 – Типовая структурная схема многоканального приемника прямого усиления

Рис. 2 – Частотные характеристики фильтров многоканального приемника

Частота принятого сигнала определяется по номеру канала, на выходе которого получен отклик. Точность определения частоты равна половине ширины полосы пропускания  $\delta f = \Delta F_{\Phi}/2$ , а разрешающая способность определяется величиной взаимной расстройки соседних каналов по частоте  $\Delta f = \Delta F_{\Phi}$ . Для упрощения каналы часто выполняют в виде простейших детекторных приемников.

Отдельный приемный канал включает полосовой фильтр (Ф), амплитудный детектор (АД), усилитель (У) и индикаторное устройство (И), с помощью которого фиксируется попадание сигнала в данный канал. Одна антенна может обслуживать несколько каналов. С помощью регистрирующего устройства осуществляется обнаружение сигналов на выходе каждого канала и регистрация частот обнаруживаемых сигналов.

Следовательно, для приёмника, работающего в УКВ диапазоне (30...108 МГц), требуется использовать 4 полосовых фильтра, с полосой пропускания  $\Delta F_{\Phi} \approx 20$  МГц (рисунок 3).

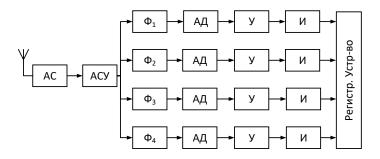



Рис. 3 – Структурная схема многоканального приемника прямого усиления УКВ диапазона

Антенная система (AC), на схеме, представлена отдельным блоком. Далее следуют антенное согласующее устройство (ACУ) и 4 полосовых фильтра. Ширина полосы  $\Phi_1$  в диапазоне частот 30...49,999 МГц,  $\Phi_2$  в диапазоне 50...69,999 МГц,  $\Phi_3$  в диапазоне 70...89,999 МГц  $\Phi_4$  в диапазоне 90...108 МГц.

Учитывая всё выше перечисленное, достоинством такого варианта построения разведывательного приемника является минимальное время обнаружения радиосигнала и определения его частоты, простота и надежность, а применение микроэлектронной элементной базы позволяет создавать многоканальные структуры с очень большим количеством каналов при малых габаритах, весе и потреблении энергии.