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The effect o f  Cr on hydrophobicity o f  Al has been investigated in rapidly solidified 
Al-I.OCr and AI-3.0Cr (at.%) alloys by means o f  SPEM. AFM and distilled water CA 
measurements. The results demonstrate the crucial importance o f  both chemical 
composition and surface morphology o f  alloys for the control o f  their wettability.

1. Introduction

In hydrogen storage technologies, aluminum-based materials are a favorite 
candidate for hydrogen tanks because of an excellent gas barrier property coupled 
with their lightness [1]. The progress in commercialization o f  hydrogen fuel cell 
vehicles requires a development o f high-strength aluminum alloys immune to 
hydrogen embrittlement (HE) for a use in compressed hydrogen storage systems 
where maximum filling pressure is increased up to 70-100 MPa. In response, 
remarkable international efforts have been deployed for an assessment o f  factors 
that account for hydrogen-assisted fracture behavior o f Al materials. In spite of 
controversy on HE mechanisms in Al alloys in the literature, a consensus has 
emerged that H provides the dominant damage mechanism for high strength 
alloys stressed in moist environments. Particular attention is focused on 
corrosion effects which can occur at wetted surfaces when atomic H enter and 
diffuse through the metal.

In our recent work H desorption measurements were successfully 
accompanied by nanoscale microstructural evaluation o f rapidly solidified (RS) 
Al and an Al-Cr alloy by means o f  synchrotron-based photoelectron microscopy 
[2] to gain insight into hydrogen/microstructure interactions developing H 
embrittlement mechanisms in Al-based alloys. The objective o f this paper is to 
•nvestigate how chemical composition and microstructure affect surface 
Wettability o f RS Al-Cr alloys.
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2. Experim ental

Foils o f pure Al, Al-l.OCr and AI-3.0Cr alloys (at.%) were produced by the 
centrifugal melt quenching method in air using a Cu wheel. The cooling rate was 
o f the order o f 10b К/s. The thickness of foil bulk parts was 50-100 ц т .

The chemical composition was studied using scanning photoelectron 
microscopy (SPEM) at the ESCAmicroscopy beamline at the 3rd generation 
Elettra Synchrotron Laboratory. In prior experiments, samples were sputter 
cleaned in 3 steps of 10 min by Ar+ bombardment with an ion energy o f 2 keV 
to eliminate surface contamination by carbon. Air-facing surface was examined 
with a photon energy o f 665 eV, energy resolution o f 0.2 eV, and spatial 
resolution o f less than 0.1 ц т . The SPEM set-up has been described in details 
elsewhere [2]. The foil roughness was characterized by means of atomic force 
microscopy (AFM) by a NT-206 instrument. Average surface roughness 
characteristics were calculated using SurfaceXplorer software. The contact 
angles (CAs) for the air-facing foil side were determined using the sessile-drop 
technique. The measurements were conducted using a 5 ц1 droplet of distilled 
water at room temperature with the relative error o f 1 %.

3. Results and discussion

Fig. 1 shows SPEM images o f an air-side surface o f RS Al-l.OCr and AI-3.0 Cr 
alloys. The contrast of the raw images in Figs. la and с reflect both the foil 
surface elemental composition and morphology. Figs. lb,d present a lateral 
distribution o f elements mapped in SPEM images.

Figure 1. SPEM images for Al 2p (a) and 
chemical map (b) obtained as the ratio о 
Al 2p metallic and oxidized species maps 
from the same area (a) o f  A l-1 OCr alloy 

foil, illustrating the relative local 
concentration o f  metallic Al. SPEM 

images for C r 2p,r. (O and Cr/backgroun« 
(d) maps acquired for Al-3.0Cr alloy- 

black solid lines in (d) indicate 
areas at upper and bottom right si с 

comers.
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The changes in the elemental composition can be observed as a difference 
in brightness in the image proportional to the relative concentration of indicated 
elements, see Figs. lb  and d. Comparing the Cr and A1 metal/oxide maps one 
can see a clear correlation between the regions o f higher/lower Cr content and 
lower/higher A1 oxide content. Black solid lines in the map o f Fig. Id mark the 
boundary between the Cr-rich and Cr-depleted (areas A and B, respectively).

The foil morphology in AFM images shown in Fig. 2 demonstrates that RS 
Al-l.OCr and Al-3.0 Cr alloys are rough on a sub-micron and nanometer scale 
and include ridge-rich surface regions and microvoids. The surface roughness is 
increased from 39.2 nm for Al-l.OCr alloy to 42.7 nm for Al-3.0Cr alloy. The 
CA measured at the surface o f Al-l.OCr alloy (86.2 deg) was larger than that

Figure 2. AFM surface images 
o f  Al-l.OCr (a) and AI-3.0Cr 
(c) alloys and correspondent 
section analysis (b) and (d) 
performed along the lines 

shown in (a) and (c). 
respectively. The inserts in left 
upper com er o f  images (a) and 
(c) show the shape o f  distilled 
water droplets on foil surfaces.

The wettability behavior has been investigated for nano-rough surfaces of 
RS Al-Cr alloys concerning specific surface properties, such as morphology, 
roughness, and surface chemistry. The present SPEM results reflect the chemical 
composition o f foil surface, rich in A1 oxide species with some scarce 
contribution o f  Cr. The Cr-rich areas (regions A in Fig. 1) exhibit a high metallic 
component of A1 at the foil surface, while Cr-free areas (regions В in Fig. 1) 
mdicate A1 almost entirely in the oxidized state. Recently, we reported that 
oxide inclusions o f АЬОз as well as А1(ОН)з and АЮОН are found both on and 
below the A1 and Al-Cr alloy surfaces [2]. As the RS A1 materials can contain a 
high density o f  lattice defects, we can attribute the presence o f aluminum

measured at the surface o f Al-3.0Cr alloy (75.2 deg).
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hydroxides and oxyhydroxides to the formation o f Al-H bonds during such non 
equilibrium processing as rapid solidification processing.

It was found that Al-l.OCr alloy exhibits hydrophobic behavior, as its large 
CA value is in a good agreement with the data which we obtained for RS pUre 
A1 (87.7 deg) [3]. One can argue that detected widespread regions with lack of 
Cr at foil surface o f Al-l.OCr alloy account for it. This fact attracts a vast 
interest because A1 is a high surface-energy metallic material expected to be 
hydrophilic [4]. At the same time, the decrease o f  CA measured on Al-3.0Cr 
alloy, see Figs. 2c,d, shows a wetting transition from hydrophobic to hydrophilic 
state o f  the samples with the increase o f Cr content when the surface roughness 
tends to be increased and according to the Wenzel model [4] the water wets the 
surface homogeneously and enters the cavities and microvoids.

4. Conclusion

The wettability o f RS Al-.vCr alloys, .v= 1.0; 3.0 at.%, has been observed to 
depend on chemical composition and surface morphology. The wetting 
transition from hydrophobic to hydrophilic state o f the foils was found with the 
increase o f Cr content when stable Wenzel state o f water droplet is observed.
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