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I. INTRODUCTION 

Fullerenes can grow by reacting with each other, similar to bubbles in a soap solution. This 
possibility was demonstrated by the example of such reaction as C24+C4 → C28, C30+C30 → C60 through the 
use of a new molecular dynamics that takes into account simultaneously both atomic and electronic degrees 
of freedom [1, 2]. In spite of these encouraging results we came to conclusion that the problem of fullerene 
growth must be spit into two: geometry and calculations. The reasons are as follows.  

In 1984 it has been found that the time-of-flight mass spectrometry (TOF-MS) distribution of laser-
evaporated graphite soot had a bimodal character [3], the low-mass distribution having  peaks for C11, C15, 
C19 and C23 species with ∆n = 4 periodicity. Little later fullerenes C60 and C70 were synthesized and a set of 
simple, empirical chemical and geodesic rules was presented by H.W. Kroto to explain the remarkable 
stability observed for the C60 molecule [4]. The rules yield cluster magic numbers consistent with 
observation. The authors of the large review having 277 references [5] state: “Today we interpret the TOF-
MS distribution as linear carbon chains in the region 1<n<10, macrocyclic rings 10<n<30, and fullerenes 
n>36 with a forbidden zone between n=30 and 36”.  

We can’t agree with this interpretation for many reasons, two of the most serious are:  
The interpretation does not explain ∆n = 4 periodicity.  
It was shown through the use of molecular dynamics [6] as well as analytically [7] that linear chains 

with free ends and with periodic boundary conditions (rings) are unstable with respect to vibrations; they 
transform at first into zigzag chains, helices, and then folds into compact structures. The reason is that small 
longitudinal vibrations transfer their energy to large transversal vibrations. This phenomenon was named as 
parametric resonance.  

In Ref. [8, 9] using the analogy with polymer physics and radiation solid state physics we 
unexpectedly obtained the ∆n = 4 periodicity for caged carbon molecules C12, C16, C20, C24. The structures 
have threefold, fourfold, fivefold and sixfold symmetry. Clearly the following reasoning was: if there exists 
the ∆n = 4 periodicity, provably there are other periodicities. Really, we have found the ∆n=8 periodicity 
[10] for the family of Cn fullerenes originating from the reactions of cupolas C10+C10 → C20, C12+C12 → C24, 
C16+C16 → C32, C20+C20 → C40, C24+C24 → C48, where the structures had also the same symmetry. Since all 
these periodicities have one and the same main feature, namely, the transition from threefold symmetry to 
sixfold, it seems reasonable, to take this feature as a basis for fullerene classification and to search other 
periodicities. It should be noted that calculations performed for small fullerenes are unable to be such a basis 
on default of any other adequate explanation.  For example, for C20 the most stable isomer can have a ring, a 
bowl or a fullerene structure, depending on the computational method employed [11].  

In this contribution we consider the growth of fullerenes through a series of joining reactions of 
cupola half-fullerenes C16, C18, C24, C30, and C36. It will be shown that there appears the ∆n = 12 periodicity 
having the same symmetry transition. 

II. FUSION REACTIONS OF CUPOLA HALF FULLERENES 

In 1889 Svante August Arrhenius postulated that a chemical reaction goes in the following way. At 
first there forms some intermediate compound and only afterwards a usual chemical reaction is going on. For 
fullerenes this postulate can be written as follows CABBA →→+ )( . In Ref. [10] we have developed an 

algorithm that has proved itself in predicting the growth of perfect fullerenes conserving an initial symmetry, 
so called the fusion reaction algorithm. 
 Reaction between two cupolas 3216161616 )( CCCCC →→+ is shown in Figures 1 a, b, c. 

 Reaction between two cupolas 3618181818 )( CCCCC →→+ is presented in Figures 1 d, e,  f. 

 Reaction between two cupolas 4824242424 )( CCCCC →→+ is displayed in Figures 1 g, h, i. 

 Reaction between two cupolas 6030303030 )( CCCCC →→+ is exhibited in Figures 1 j, k, l. 

 Reaction between two cupolas 7236363636 )( CCCCC →→+ is illustrated in Figures 1 m, n, o. 
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Figure 1 – Joining of two half-fullerenes C16, C18, C24, C30 and C36. a, d, g, j, m) Separate carbon cupolas; 
b, e, h, k, n) Intermediate compound; c, f, I, l, o) Polyhedrons after relaxation. 

Dark-red and light-blue balls are reacting and neutral atoms, respectively; thin light-blue solid and dashed lines 
are covalent bonds; heavy dark-red solid and dashed lines are new covalent bonds. 

III. SINGLE AND DOUBLE BONDS 

We assume that the symmetry of double bonds location about the major axis of cupolas and other 
fullerenes coincides with that of fullerene C60. Using this postulate, we have all the necessary input data for 
the optimization of the fullerene and cupola structures designed by means of geometric modeling and for 
subsequent calculation of their properties. As it was described above, the cupolas having one and the 
symmetry can react with each other producing fullerenes C36, C48, C60, and C72 with single and double 
covalent bonds and, in the case of fullerene C32, with partially delocalized bonds too. The optimized 
structures of the fullerenes obtained through the use of Avogadro package [12] are shown in Figure 2.  

l) j) k) 

m) 
n) 

o) 

g) h) i) 

d) e) f) 

a) b) c) 
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Figure 2 – Structure of the ∆n=12 series fullerenes with single and double bonds. Energy in kJ/mol 

IV. SYMMETRY AND ENERGY OF PERFECT FULLERENES 

Modeling the growth of fullerenes from C24 (D3h symmetry) to C48, we have obtained the perfect 
fullerenes C30 and C36 conserving three-fold symmetry [13]. Modeling the growth of fullerenes from C32 (D4h 
symmetry) to C60, we found perfect fullerenes C40 and C48 conserving four-fold symmetry [14]. The mass 
difference between successive fullerenes in the first case is ∆m=6, in the second case ∆m=8. It should be 
emphasized that in both cases the mass difference is equal to a double degree of symmetry. 

It is intriguing to combine periodicities, ∆m and ∆n, in order to gain a better understanding of the 
energy results obtained. With this in mind, we designed the fullerenes of the neighbor periodicities ∆n=8, 
∆n=10 and ∆n=14 using geometrical modeling, optimized their structures through the use of Avogadro 
package, and calculated their energies. The results are given in the table where all the fullerenes form five 
vertical columns (groups), having different symmetry. Two groups of three-fold symmetry differ by the 
structure of their apices. The 3-fold-symmetry group S has two sharp apices, the third-order axis going 
through them. The 3-fold-symmetry group T has two truncated apices, the third-order axis going through the 
centers of triangles. 

The energy minimum for fullerenes C50 and C60 having fivefold symmetry can be explained in the 
context of strain-related instability [4, 13], however, the least energy obtained unexpectedly for fullerene C26 
contradicts to this concept and needs more careful investigation. At this point we have a semi-quantitative 
explanation in the framework of electronic theory of molecule vibrations [15]. 
 

 3-fold S  ∆m=6 3-fold T 
∆m=6 

4-fold 
∆m=8 

5-fold 
∆m=10 

6-fold 
∆m=12 

∆n= 8 C20  1647 C24  3667 C32  2291 C40  2007 C48  2562 

∆n=10 C26   831 C30  3923 C40  2426 C50  1979 C60  2329 

∆n=12 C32  1015 C36  4065 C48  2500 C60  1970 C72  2210 

∆n=14 C38  1206 C42  4253 C56  2643 C70  2069 C84  2255 
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STRUCTURE AND ENERGY OF THE ∆n=6 SERIES FULLERENES 
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I. INTRODUCTION 

Earlier it was shown that fullerenes can grow by reacting with each other, similar to bubbles in a 
soap solution [1]. In this case fullerenes C24, C32, C40, and C48 can be formed; the structure periodicity being 
∆n=8, where n is the number of carbon atoms. The periodicity has one and the same main characteristic 
feature; the fullerene structure changes from threefold symmetry to sixfold through four and fivefold ones. 
We suppose that this feature can be taken as a basis for rigorous fullerene classification in addition to the 
geometric classification developed for mini-fullerenes [2].  

Now we want to increase the number of fullerenes fitted our classification by adding the fullerenes 
of the structure periodicity ∆n=6 designed in Ref. 3. In this contribution we present the structure and energy 
of such fullerenes. Knowing their structure allows one to activate the fullerenes, including unknown 
previously, for farther investigations and use of their properties.   

II. FUSION REACTIONS OF CUPOLA HALF FULLERENES 

In Ref. [1] we have developed an algorithm that has proved itself in predicting the growth of perfect 
fullerenes conserving an initial symmetry, so called the fusion reaction algorithm. Consider reactions leading 
to mini-fullerenes C14. In Fig. 1 the atomic configurations corresponding to reaction 

147777 )( CCCCC →→+  and 14104104 )( CCCCC →→+ are shown. At first two molecules C7, or C4 and 

C10, are moving towards each other (Figs. 1, a and d). Then the boundary atoms (dark-red) interact with each 
other producing a compound (Figs. 1, b and e). During this process new covalent bonds (heavy red lines) are 
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