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Analytical properties of solutions

to a class of third-order nonlinear dynamical

dissipative systems with no chaotic behaviour
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220013, Belarus

E-mail: tsegvv@bsuir.by

Abstract. The singular analysis was performed for solutions of one class of third-order
nonlinear dynamical systems with no chaotic behaviour. It is established that all systems
of the given class (except one) are not the systems of Painlevé-type.

1. Introduction
One of the important events in classical nonlinear physics of mid-twentieth century was the
realization that nonlinear deterministic equations (systems) could have chaotic solutions that
exhibited both a sensitive dependence on initial conditions and long-term unpredictability.
An interesting and remaining to be solved is the problem of identifying minimum necessary
conditions for chaos. In [1], computer simulation was used to obtain 19 third-order dynamic
systems with complex chaotic behavior, which are algebraically simpler than the known Lorentz
and Rössler ones. The distinctive difference of the above Sprott systems is that their right-hand
parts contain 6 components with one quadratic nonlinearity or 5 components with two quadratic
nonlinearities. In [2], the class (including four families) of third-order nonlinear dynamical
dissipative systems with no chaotic behaviour was found

ẋ = y2 − x, ẏ = z, ż = x. (1.1)

ẋ = y2 + z, ẏ = x, ż = −z. (1.2)

ẋ = yz − x, ẏ = x, ż = y. (1.3)

ẋ = y2, ẏ = x + z, ż = −z. (1.4)

ẋ = y2, ẏ = z − y, ż = x. (1.5)

ẋ = y2, ẏ = z, ż = x− z. (1.6)

ẋ = yz, ẏ = x, ż = x− z. (1.7)

ẋ = yz, ẏ = x, ż = y − z. (1.8)

ẋ = y2 + yz, ẏ = x, ż = −z. (2.1)
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ẋ = y2 + z2, ẏ = x, ż = −z. (2.2)

ẋ = y2 − x, ẏ = xz, ż = εy. (2.3)

ẋ = y2 − x, ẏ = xz, ż = kz. (2.4)

ẋ = y2 − x, ẏ = z2, ż = x. (2.5)

ẋ = y2 + y, ẏ = xz, ż = −z. (2.6)

ẋ = y2 + z, ẏ = x2, ż = −z. (2.7)

ẋ = y2 + z, ẏ = xz, ż = −z. (2.8)

ẋ = yz − x, ẏ = x2, ż = εx. (2.9)

ẋ = yz − x, ẏ = x2, ż = y. (2.10)

ẋ = yz − x, ẏ = x2, ż = kz. (2.11)

ẋ = yz − x, ẏ = εxz, ż = y. (2.12)

ẋ = yz − x, ẏ = z2, ż = εx. (2.13)

ẋ = εy − x, ẏ = xz, ż = x2. (2.14)

ẋ = εy − x, ẏ = xz, ż = y2. (2.15)

ẋ = y − x, ẏ = z2, ż = x2. (2.16)

ẋ = y − x, ẏ = z2, ż = xy. (2.17)

ẋ = x2 + yz, ẏ = −2xy, ż = −z. (3.1)

ẋ = y2 + yz, ẏ = x2, ż = −z. (3.2)

ẋ = y2 + yz, ẏ = εxz, ż = −z. (3.3)

ẋ = y2 + εz2, ẏ = x2, ż = −z. (3.4)

ẋ = y2 + εz2, ẏ = xz, ż = −z. (3.5)

ẋ = xy − x, ẏ = xz, ż = −yz. (3.6)

ẋ = y2 − x, ẏ = xz, ż = x2. (3.7)

ẋ = y2 − x, ẏ = xz, ż = y2. (3.8)

ẋ = y2 − x, ẏ = z2, ż = x2. (3.9)

ẋ = y2 − x, ẏ = z2, ż = xy. (3.10)

ẋ = yz − x, ẏ = x2, ż = εxy. (3.11)

ẋ = yz − x, ẏ = x2, ż = y2. (3.12)

ẋ = yz − x, ẏ = εxz, ż = y2. (3.13)

ẋ = y2 + yz, ẏ = −y, ż = x2. (3.14)

ẋ = ε + y2, ẏ = xz, ż = −z. (4.1)

ẋ = 1 + yz, ẏ = x2, ż = −z. (4.2)

ẋ = 1 − x, ẏ = xz, ż = y2. (4.3)

ẋ = y2 − x, ẏ = xz, ż = 1. (4.4)
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ẋ = yz − x, ẏ = x2, ż = 1 (4.5)

with unknown functions x, y, z of the independent variable t, where k is a parameter (k < 1)
and ε2 = 1.

Each of the above systems is, as noted, dissipative and contains four components in the
right-hand part. Right-hand parts of the systems (1.1)–(1.8), (2.1)–(2.17), (3.1)–(3.14) contain
one, two, three quadratic nonlinearities correspondingly. Right-hand parts of the systems (4.1)
– (4.5) contain one constant and two quadratic nonlinearities.

Assuming the independent variable t to be complex, let us determine whether the general
solution of the above systems has no moving critical singular points, that is, whether the so
called Painlevé property is fulfilled for them. Systems (equations) with the Painlevé property
are called systems (equations) of the Painlevé-type or P -type.

1. The system (1.1) is equivalent to equation

...
y = y2 − ÿ. (1)

The system (1.2) is equivalent to equation

ÿ = y2 + Ce−t, (2)

where C is an arbitrary constant.

The system (1.3) has a first integral x + y − z2

2 = H (H is an arbitrary constant) and so is
equivalent to equation

z̈ + ż − z2

2
= H. (3)

The system (1.4) also is equivalent to equation (2). Each of the systems (1.5), (1.6) is equivalent
to equation (1). The system (1.8) is equivalent to equation

...
z + z̈ − zż − z2 = 0. (4)

Note, that the equations (2), (3) are not included in the list of equations in [3], general
solutions of which have no movable critical singular points. The equation (4) is not included in
[4] in the list of equations

...
u = P (t, u, u̇, ü), where P is a polynomial in u, u̇, ü with analytic in t

coefficients, the general solutions are free from movable critical singular points. Because of this
the system (1.8) is not the system of Painlevé-type.

The system (1.7) is equivalent to equation

y
...
y + yÿ − ẏÿ − ẏÿ − y2ẏ = 0. (5)

To clarify the question of whether the system (1.7) is the system of Painlevé-type we use the
Painlevé test. The formal Painlevé test refers to any algorithm, which verifies the fulfillment of
the conditions required for the existence in differential equation (system) the Painlevé property.
The system (1.7) study was conducted according to the same scheme as in [5].

Theorem 1 Systems (1.2), (1.4) are not the systems of P -type. However, componet z of the
data systems does not have movable critical singular points at all.

Theorem 2 Systems (1.1), (1.3), (1.5), (1.6), (1.8) are not the systems of P -type.
Theorem 3 The system (1.7) is not the system of P -type. The validity of this assertion

follows from the fact that for the system (1.7) is not fulfilled the condition of the 3-rd step
in Painlevé test, namely: the system for determining constant solutions of the system (1.7) in
formal Laurent expansions is not joint.

Corollary 1. Equation (5) is not a Painlevé-type equation.
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2. Systems (2.1), (2.2), (2.4), (2.6)–(2.8), (2.11) due to the fact that the unknown function
z is explicit (and does not have movable critical singular points) are reduced to nonlinear
nonautonomous equations of the second order, the solutions of which according to [3] do not
possess the Painlevé property. Thus, the following is true

Theorem 4 None of the systems (2.1), (2.2), (2.4), (2.6)—(2.8), (2.11) is of the Painlevé-
type. At the same time, a component z of these systems has no movable critical singular points
at all.

Theorem 5 None of the systems (2.5), (2.10), (2.16), (2.17) is of the Painlevé-type.
The proof of this theorem follows from the fact that each of these systems fails the first step

of Painlevé test.
Systems (2.3), (2.9), (2.12), (2.15) are equivalent to equations

z
...
z = żz̈ − zz̈ + εż2z2, (6)

z
...
z = żz̈ − zz̈ + εż2z2 + ż2, (7)

z
...
z = żz̈ − zz̈ + εżz3, (8)

x
...
x = ẋẍ− xẍ + εx2(ẋ + x)2 + ẋ2. (9)

The system (2.13) and the system (2.14) are equiavalent to the equation

w
...
w = ẇẅ − wẅ + ẇ2 + εw4 (10)

from z and x correspondingly.
Theorem 6 None of the systems (2.3), (2.9), (2.12)–(2.15) is of the Painlevé-type. Applying

to systems (2.3), (2.9), (2.13)–(2.15) the Painlevé-test shows, that for them the condition of the
first step of the given test is not fulfilled. As for the system (2.12), for it the condition of the
third step of the test is not fulfilled: the system for determining constant solutions of the system
(2.12) in formal Laurent expansions is not joint.

Corollary 2. None of the equations (6) – (10) is of the Painlevé-type.
3. Analysis of the systems (3.1), (3.3), (3.5) shows, that each of them admits a reduction of

order and they are reduced to nonlinear nonautonomous equations of the second order, which
are not included in the list in [3] of equations of P -type. Consequently, the following is true

Theorem 7 None of the systems (3.1), (3.3), (3.5) is of the Painlevé-type. At the same time,
a component z of these systems has no movable critical singular points at all.

Each of the systems (3.2), (3.4), (3.14) admits a reduction of order. In this connection the
following is true

Theorem 8 None of the systems (3.2), (3.4), (3.14) is of the Painlevé-type. At the same
time, one of the components (z for (3.2), (3.4)) and y for (3.14) has no movable critical singular
points at all.

Theorem 9 The system (3.6) is of the Painlevé-type. Its general solution has the form

x =
ẏ

z
, z = c3e

c1t+c2e−t
, y = c1 + c2e

−t,

where c1, c2, c3 are arbitrary constants.
Indeed, the system (3.6) ẋ = xy− x, ẏ = xz, ż = −yz has the first integral xz + y = c, which

allows to reduce it to the linear equation ẏ + y = c and find the explicit form of y.
For systems (3.7), (3.9), (3.10), (3.12) the condition of the second step of Painlevé test is not

fulfilled: the resonance equations have two complex conjugate roots with positive real part.
Systems (3.8), (3.11), (3.13) do not pass the third step of the Painlevé test:
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1. The system for determining constant solutions of the system (3.8) in formal Laurent
expansions is not joint.

2. Laurent expansions of the solutions of the system (3.11) contain 2 (instead 3) arbitrary
constants. In this connection the resonance equation has a positive root of multiplicity 2. In
this case the system (3.11) has the first integral

x2

2
+

εz2

2
+ y = K,

where K is an arbitrary constant.
3. Laurent expansions of the solutions of the system (3.13) contain 2 (instead 3) arbitrary

constants. The resonance equation has the same as in the case of the system (3.11) positive root
of multiplicity 2.

Theorem 10 None of the systems (3.8), (3.11), (3.13) is of the Painlevé-type.
Systems (4.1) – (4.5) are reduced to two-dimensional non-autonomous systems, each of which

does not pass the Painlevé test. Thus, the following is true
Theorem 11 None of the systems (4.1) – (4.5) is of the Painlevé-type. At the same time,

one of the components (z for (4.1), (4.2), (4.4), (4.5) and x for (4.3)) has no movable critical
singular points at all.
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