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Abstract—Cultured dissociated neurons forming network in
vitro is a unique system representing living biological neural net-
work developing in fully artificial conditions. This is a promising
model for study of basic mechanisms of the brain functioning that
requires special tools for interfacing and investigations. We have
developed a set of devices and techniques for culturing of neural
network on the surface of microelectrode sensor and registered
specific patterns of electrical activity of the living neural network
in vitro.
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I. INTRODUCTION

Human brain can be considered as a highly sophisticated
system for semantic processing [1], [2]. The basis of brain
functioning is a complex neural network formed by biological
cells. An ability to establish communications between neurons
by means of electrical pulses and to process information
in large neuronal ensembles are unique properties of neural
tissue. There are numerous models of semantic processing
based on neural networks [3], [4]. One particular class of
these models is based on spiking neural networks [5] which
closely resemble features of biological neural tissue. In this
regard, studies of data processing mechanisms in brain have
particular interest for development of intellectual systems
design principles.

Mechanisms of brain functioning can be studied at different
levels starting from molecular, cellular, network and up to
behavioral and psychological. In the context of network level,
cultured dissociated neurons forming connections in vitro is
a unique system representing living biological neural network
developing in fully artificial conditions. This is a promising
model for study of basic mechanisms of the brain functioning
that requires special tools for interfacing. Therefore, develop-
ment of highly specialized investigation methods is required in
order to obtain knowledge about deep mechanisms of neural
ensembles functioning. We have developed a set of devices
and techniques for culturing of neural network on the surface
of microelectrode sensor and registered an electrical activity
of the living neural network in vitro.

II. EXPERIMENTAL

We have developed the 64-channel microelectrode sensor
of neuronal electrical activity suitable for multichannel inter-
facing with cultured neural networks. The sensor consists of
planar glass base with transparent indium-tin-oxide conducting
tracks serving as electrodes. The chamber for neuronal culture
solution has been developed on the basis of 3D printing
techniques as shown at the Fig. 1. For recording of elec-
trical activity of neurons, a specialized 64-channel amplifier
has been developed with built-in analog to digital converter
and digital serial interface. Basic recording and visualization
operations are controlled by the open-source software.

Dissociated neurons of the rat cortex were seeded on surface
of a microelectrode array (64 electrodes) in recording chamber
and placed in cell incubator. Cells formed dense network of
interconnecting neurites after three weeks in culture as shown

Figure 1. Microelectrode sensor with culture chamber attached.
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Figure 2. Neurons form dense network of interconnections around one of the
working microelectrodes.

at the Fig. 2. Dark spot on the picture is electrode coated with
opaque layer of electrodeposited conducting polymer poly(3,4-
ethylenedioxythiophene) in order to reduce impedance and
recording noise. Amplified extracellular activity of neurons
was digitized and recorded to the hard disk of computer
during experiments. The rate of data stream is about 10
gigabytes per hour in our case of 64 recording channels
and 20 KHz sampling frequency so that specialized high-
performance software tools for data processing are required.
We used customized open-source module «Tridesclous» [6] for
spike detection and classification. Spikes were distinguished
from background noise on the basis of threshold crossing and
then classified into clusters by principal component analysis.

III. RESULTS

Typical examples of recorded multichannel neuronal elec-
trical activity is shown at the Fig. 3. Each channel corresponds
to different electrode of the array. Marks denote spikes divided
into distinct clusters on the basis of amplitude and shape so
that even different neurons near one electrode can be distin-
guished. Neuronal activity on the recordings is represented by
background single sparse spikes and spike bursts. As shown
at the Fig. 3a, a group of neurons at the channel 33 generates
intense periodic bursts of spikes. A burst is composed by
sum of repeating spikes of nearby neurons. Amplitudes of
spikes are different due to different distances from electrode
to neurons. This activity remains confined and spreads only
partially and locally to channels 42 and 63.

Fig. 3b and Fig. 3c show another type of network behavior.
Bursts at the channel 33 are followed by the bursts at the
channel 63 and then less intense bursts and single spikes at the
other channels. Therefore, activity generated by «pacemaker»
group of neurons at the channel 33 propagates via neurites and
synaptic connections over the network. Patterns of activation
at Fig. 3b and Fig. 3c are similar but number of spikes
in individual channels, exact timing of spikes and number
of channels involved in network activation are different in
sequential network bursts. This variability of the response

is due to complex nature of biochemical processes running
in living cells and thus constantly changing properties of
individual neurons and synapses.

IV. DISCUSSION

Analysis of electrical activity of biological neural net-
works is a complex problem including signal filtering, spike
detection, classification and spike train analysis [7]. Many
algorithms of spikes detection in background noise are based
on threshold crossing. Choice of a threshold for spike detection
is an important task because too high threshold will lead to
losses of spikes, too low – to false positive detection of noise
peaks as spikes. In our case, involvement of all channels in
network events may indicate satisfactory functioning of the
detection algorithm.

Spiking and bursting activation patterns observed in our
experiments is a distinct feature of biological neural networks.
Single sparse spikes between bursts may look like insignificant
in network behavior, but investigations show that such single
unit activity may play important role in shaping of bursting
events [8]. Bursts of spikes increase reliability of neural
information transmission and promote induction of synaptic
efficacy changes [9]. Observed in our experiments two types
of bursting (Fig. 3a and Fig. 3b, 3c) correspond to local and
global network bursting indicating switching of the network
behavior into different states.

Using topological tools, it is possible to find subnetworks
with repetitive and synchronous patterns of activity thus re-
vealing connectivity features of network [10]. Data of [10]
show that patterns of spiking propagation induced by external
stimulation are topologically similar to spontaneous activation
indicating that stimulating electrode can be treated as a bio-
logically realistic input to the network.

A set of external stimulating electrodes can be treated as a
vector input to the neural network and it is possible to attempt
inducing learning processes [11] on the basis of biological
learning rules [12]. In this regard, a question arises about
detecting changes induced by learning protocols. Spontaneous
activity can interfere with evoked one so several measures
can be applied to reduce spontaneous activation such as
pharmacological manipulation or low-frequency stimulation
[13].

Despite confined simple structure, living network in vitro
exhibit substantially complex behavior. One of the well-known
and distinct features of developing in vitro neural networks
is an extremely diverse set of electrical activity patterns
[14]. Therefore, special techniques are required to distinguish
between stochastic and determined network events. Different
kinds of activity are distinguished such as spikes, avalanches
and fluctuations [15] that can be treated as semantic represen-
tations of current network state. Activity patterns presented at
Fig. 3b and Fig. 3c have similar overall features but different
exact timing of individual spikes. Removal of stochastic part
of the response and maximizing information from spike timing
is important for analysis approach to completely describe
network state.

266



(a)

(b)

(c)

Figure 3. Examples of electrical activity recorded at different time periods. (a) - Bursting activity at the channel 33. (b),(c) - Activity propagation through
the network. Y axis - number of recording channel, X axis - time in seconds from recording frame start.267



One of the approaches to reduce variability of electrical
activity and to improve response predictability can be based
on formation of ordered neural network [16].

The experimental model considered is two-dimensional
network with because it is growing on a planar substrate.
Modern cell culture techniques offer possibilities to engineer
three-dimensional cell structures with topology resembling in
vivo neural networks. Such network in vitro has more longer
and complex response to external stimulation and spontaneous
activity is characterized by spatial segregation of bursting with
absence of global synchrony [17].

Increasing scale and complexity of modern electrophysio-
logical experiments indicate need for new tools of ’big data’
processing [18]. New approaches can be based on powerful
tools inspired by intellectual systems designs such as deep
learning [19], [20].

V. CONCLUSION

Diverse natural activity patterns of biological neural net-
works cultured on planar microelectrode arrays require uti-
lization of sophisticated techniques in order to capture high-
order features of the network state on the basis of recorded
extracellular potentials. Several tasks are being solved for this
purpose such as development of techniques for analysis of
complex spatiotemporal patterns of network activation in order
to detect response features induced by learning protocols.

Biological neural network in vitro is considered as a per-
spective experimental model for study of the mechanisms of
learning. The ultimate goal of experiments with such networks
is a reproduction of learning and memory processes specific
to brain. However, in spite of extensive scientific work during
past two decades this goal currently is not considered as clearly
achieved [21]. Our current work is directed towards inducing
learning processes by application of appropriate stimulating
patterns to the patterned cultured neural network.
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ПАТТЕРНЫ ЭЛЕКТРИЧЕСКОЙ АКТИВНОСТИ
БИОЛОГИЧЕСКОЙ НЕЙРОННОЙ СЕТИ in vitro
Денисов А.А., Булай П.М., Питлик Т.Н., Молчанов
П.Г., Досина М.О., Пашкевич С.Г., Черенкевич С.Н.

Культивируемые диссоциированные нейроны, обра-
зующие синаптические связи in vitro, являются уни-
кальной системой, представляющую собой живую био-
логическую нейронную сеть, развивающуюся в полно-
стью искусственных условиях. Это многообещающая
модель для изучения основных механизмов функци-
онирования мозга, которая требует специальных ин-
струментов для исследования и взаимодействия. Нами
разработан комплекс устройств и методов для культи-
вирования нейронной сети на поверхности микроэлек-
тродного сенсора и получены специфические законо-
мерности электрической активности живой нейронной
сети in vitro.
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