
Associative Processor as Means of Disjoint Sets
Representation and Dynamic Connectivity Problem

Solving
Nikolai L. Verenik

and Mikhail M. Tatur
Belarusian State University of Informatics and Radioelectronics

Minsk, Belarus
nick.verenik@gmail.com

tatur@i-proc.com

Abstract—The article briefly describes data structures and al-
gorithms for working with disjoint sets. The use of an associative
processor with an original architecture for representing disjoint
sets and solving the dynamic connectivity problem with the
help of adapted quick-find algorithm is proposed. The presented
approach allows to achieve constant running time of basic union-
find operations and linear complexity for processing sequence of
union-find operations in any order.

Keywords—disjoint set, union-find, quick-find, parallel com-
puting, vector processor, associative memory

I. DYNAMIC CONNECTIVITY PROBLEM

We are given sequence of pairs of integers where every
integer represents an object of some type and the pair p-q
means “p is connected to q”. Assume that the relation p-q is
equivalent, i.e. has the following properties:

• reflexivity (p is connected to p);
• symmetry (if p is connected to q, then q is connected to
p);

• transitivity (if p is connected to q and q is connected to
r, then p is connected to r).

The problem is to develop an efficient data structure for
storing sufficient information about the input pairs to be able
to decide at any time whether an arbitrary pair of objects p
and q is connected. The example of processing a sequence of
pairs is presented in Fig. 1.

When processing each new pair of objects from the input,
we need to determine whether it represents a new connection,
and then integrate the information about the detected connec-
tion into the data structure to be able to test connections in
the future.

This problem is actually a fundamental computational task
that arises in a variety of applications, from percolation in
physical chemistry to connectivity in large communications
networks. These are few of subject areas where the data
structure of such kind can serve to represent objects [1]:

• computers in a network;
• friends in a social network;
• transistors in a chip;
• pixels in a digital image;

• variable-name-equivalence problem in some program-
ming languages;

• metallic sites in a composite system;
• elements in a mathematical set etc.
The difficulty with these applications is a possible need to

process millions of objects and billions or more of connec-
tions. Thus, the following properties are common for the given
problem:

• number of objects N can be huge;
• number of operations M can be huge;
• find and union commands are called in random order.
The dynamic connectivity problem can be reduced to the

following two abstract operations that we need to implement:
1) CONNECTED(p, q) - determines whether the pair of

objects p and q is connected.
2) UNION(p, q) - replaces the sets containing the objects p

and q by their union. We define connected components
as maximal set of objects connected with each other.

Thus, the procedure for processing the input sequence of
pairs of integers can look like this:

1: for all (p-q) do
2: if not CONNECTED(p, q) then
3: UNION(p, q)
4: end if
5: end for

II. DISJOINT SETS AND OPERATIONS ON THEM

The generalization of the connectivity problem is disjoint-
set data structure (or union-find data structure). Such a struc-
ture maintains a collection S = {S1, S2, ..., Sk} of disjoint
dynamic sets, where each set is identified by a representative,
which is a certain element of the set. The element that used as
a representative depends on the applied problem and doesn’t
always matter.

The data structure for disjoint sets should support the
following operations [2]:

• MAKE-SET(p) creates a new set consisting of one ele-
ment (and thus representative) that is p. Since sets are

175

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Union(0, 4)

Union(2, 5)

Union(7, 3)

Union(1, 2)

Union(0, 1)

Union(6, 5)

Union(4, 5)

Union(1, 5)

Connected(1, 5) → true

Connected(4, 6) → false

Connected(4, 6) → true

{0, 4}

{1, 2, 5}

{3, 7}

{6}

{0, 1, 2, 4, 5, 6}

{3, 7}

a b c

Figure 1. An example of processing a sequence of pairs of integers. The sequence of the executed commands (a); graphical representation of the data
structure (b); connected components (c)

disjoint, it is required that p is not already in some other
set.

• UNION(p, q) unites dynamic sets that contain p and
q (denoted by Sp and Sq) into a new set. Assume
that the two sets are disjoint prior to the operation.
The representative of the resulting set is any element
of Sp ∪ Sq , although many implementations of UNION
choose the representative of either Sp or Sq as the new
representative. Since we require all sets to be disjoint,
UNION operation must conceptually destroy the sets Sp

and Sq , removing them from the collection S. In practice,
the elements of one of the sets are absorbed into the other
set.

• FIND-SET(p) returns a pointer to the representative of
the (unique) set which contains the element p.

The problem of implementing disjoint-sets data structure
has been well developed by a number of researchers. The
convention that both elements and sets will be identified by
integer values between 0 and N − 1, so a simple linear
array id[] is used as basic data structure to represent the sets.
Initially, we start with N sets, each element in its own set,
so we initialize id[i] to i for all i from 0 to N − 1. For each
element i, we keep the information needed by FIND-SET(p)
method to determine the set containing element i using various
algorithm-dependent strategies. As a result CONNECTED are
reduced to simple check FIND-SET(p)== FIND-SET(q).

The running time of the disjoint-set data structures is usually
analyzed in terms of two parameters: N , the number of
MAKE-SET operations, and M , the total number of MAKE-
SET, UNION and FIND-SET operations. Assume that N
MAKE-SET operations are the first N operations performed

(during the initialization process), and the number of UNION
operations cannot exceed N −1 (since the sets are disjoint by
definition). Table I provides a summary of the most widely
known algorithms with their worst-case running time cost [1].

III. QUICK-FIND ALGORITHM IMPLEMENTATION USING
ASSOCIATIVE PROCESSOR

Consider the quick-find algorithm. The basis of this algo-
rithm is an array of integers id[] with the property that pair
of elements p and q are connected if and only if the id[p]
and id[q] values of array are equal. This method is called
quick-find because FIND-SET(p) just needs to return id[p] to
complete the operation. Then to implement UNION(p, q) it is
enough to replace all entries in the array corresponding to both
sets by the same value, yet for that we need to go through the
whole array.

Fig. 2 shows an example of processing the sequence of pairs
of integers used in Fig. 1. The code is quite straightforward:

UNION(p, q)
1: r ← id[p]
2: for i = 0 to N − 1 do
3: if id[i] = r then
4: id[i]← id[q]
5: end if
6: end for

MAKE-SET(p)
1: id[p]← p

FIND-SET(p)
1: return id[p]

As far as we can see the main disadvantage of the quick-find
algorithm is UNION operation which requires seeing the entire
data array id[]. It will take N2 accesses to the array in order to

176

Table I
M UNION-FIND OPERATIONS ON A SET OF N OBJECTS

Algorithm MAKE-SET UNION FIND-SET Worst-case time
Quick-find (QF) N N 1 MN
Quick-union (QU) N N N MN
Weighted QU (WQU) N lgN lgN N +M lgN
QU + path compression (QUPC) N lgN lgN N +M lgN
WQU + path compression (WQUPC) N lgN lgN N +M lg∗ N
∗Iterated logarithm

0 1 2 3 4 5 6 7

4 5 5 3 4 5 6 3

{0} {1} {2} {3} {4} {5} {6} {7}

{0, 4} {1, 2, 5} {3, 7} {6}

{0, 1, 2, 4, 5, 6} {3, 7}5 5 5 3 5 5 5 3

a b

0 1 2 3 4 5 6 7

Figure 2. Representation of data in the quick-find algorithm. Elements in
data array (a); connected components (b)

process a sequence of N union operations for a structure with
N objects, what is prohibitively expensive. That is the reason
why quick-find can not be used to solve real-life problems with
a huge number of objects and better algorithms (WQUPC, see
Table I) are used. However, if we assume that the operation
of writing to the data array can be performed synchronously
for all elements in constant time, then the efficiency of this
simple algorithm will drastically change.

In the articles [3] the architecture of the developed asso-
ciative processor was considered. In essence, it is a SIMD
class processor in which all memory is evenly distributed
between a set of PE. Each PE is responsible for accessing
its memory cells, implemented as a function of comparing the
contents of the cell with the input word. As a result, the entire
sequence of simple PEs can synchronously perform operations
on all memory cells or over a selected set of associative
memory words. We can consider the processor of this type
as an intelligent memory with a specific interface for data
access. Like an ordinary memory, all the functionality that the
processor provides is reading and writing data.

Fig. 3 shows the only command of the associative processor.
To address memory cells instead of a fixed address a search
operation is used where the input parameters are the SM and
ST fields, the mask and the search tag respectively. The PE
compares the contents of each cell with the value of the search
tag ST according to the bit mask SM . In case of equality,
the cell is considered active and the selected binary operation
(field “operation type”) is applied to it, in the simplest case
corresponding to assignment . The write operation is also not
applied to all bits in the memory cell, but only to the marked
by WM mask. The bit values are taken from the WD field.

single

cell

0

operation

type

SM, search

mask

ST, search

tag

WM, write

mask

WD, write

data

0 0 0 0 01 k-1 k-1 k-1 k-1

0 4k+2

op.code search fields write fields

Figure 3. The associative processor command

used read id value

2 33 63320 1

Figure 4. Interpretation of the memory cell data (bitwidth k = 64 bits)

The “single cell” command bit is used when it is necessary
to guarantee the activation of only one memory cell, which
is necessary, for example, to implement sequential readout of
data from the processor memory.

It is proposed to use the associative processor of this type as
a basis data structure when solving the dynamic connectivity
problem by the quick-find algorithm.

The data format of the processor’s memory cell is shown
in Fig. 4. It is not used by associative processor itself as
processor operates only at bit-level without resorting to upper-
level abstractions. Thus, this is only one of the options for
interpreting the cell data by a programmer, chosen for the
convenience of solving a particular problem. The “used” bit
is used to identify free memory cells so we can initialize them
one by one. The “read” bit for a given problem is not used, but
is reserved for implementing data readout from the processor.
The “id” field corresponds to the element identifier or array
index in the basic implementation of the quick-find algorithm.
The “value” field contains the representative of the set that
contains the element. With the 64-bit memory cell specified in
the example, it is possible to address 231 = 2 billion objects.

All necessary operations for working with disjoint sets data
structure can be implemented at the application level. Table II
presents an example of such an implementation for the selected
data format (Fig. 4). For example, INIT reset SM mask field to
zero so it won’t be used (hence it doesn’t matter what we send
in ST field) and all memory cells will be addressed. Similarly,
WM mask field is set to 0xFF to fill these addressed cells

177

Table II
OPERATIONS FOR WORKING WITH A DISJOINT SETS DATA STRUCTURE IMPLEMENTED USING THE ASSOCIATIVE PROCESSOR

s.cell op.type SM ST WM WD

used read id value used read id value used read id value used read id value
1 0 00 0 0 0x00 0x00 - - - - 1 1 0xFF 0xFF 0 0 0x00 0x00
2 1 00 1 0 0x00 0x00 0 - - - 1 0 0xFF 0xFF 1 - p p
3 1 00 1 0 0xFF 0x00 1 - p - 0 0 0x00 0x00 - - - -
4 0 00 1 0 0x00 0xFF 1 - - id[p] 0 0 0x00 0xFF - - - id[q]
1INIT() fills memory cells with zeros.
2MAKE-SET(p) writes the element p to the first available memory cell.
3FIND-SET(p) returns the last addressed memory cell that is id[p].
4UNION2(id[p], id[q]) writes id[q] value to all memory cells where id[p] is stored.

with zeros (see WD). The other thing to mention is that union
method is a bit different from the initial one (here it is called
UNION2). The method takes the two representatives of the sets
to unite instead of the original pair of elements identifiers.

Listing 1. Quick-find algorithm using the associative processor (C++)

void main () {
I n i t () ;
f o r (i n t i = 0 ; i < n ; ++ i) MakeSet (i) ;
whi le (s t d : : c i n >> p >> q) {

i n t r1 = F i n d S e t (p) ;
i n t r2 = F i n d S e t (q) ;
i f (r1 != r2) Union2 (r1 , r2) ;

}
}

CONCLUSION

A weighted quick-union algorithm is generally used for
solving disjoint-set problems. It has number of various modifi-
cations (such as path compression) and as a result worst-case
running time O(N + M lgN) is achieved. Analysis can be
improved to O(N + Mα(M,N)) [4] [5], where α(M,N) –
a very slowly growing function. In practice, the running time
is almost linear.

On the other hand the presented associative processor allows
us to achieve constant running time for basic operations (see
Table I). As a result, the cost of performing M consecutive
operations is Θ(M). Basically, the running time depends
solely on the number of processed M operations. Thus, the
most important characteristic is the command processing time
which depends on actual hardware implementation.

The running time to process single operation, or the time to
process N k-bit words in the associative computing system is
given by [6]:

T = k × t× (
N

n
+K),

where t - time of associative memory cycle; n - number of PE;
K - factor of complexity of performing a single elementary
operation (the number of sequential steps accessing memory).
Thus, the time of processing T is constant and depends on
the value of N/n, i.e. the number of memory cells per PE.
After fixing the value of N/n (GPU threads configuration or
scheme adjustment for PE on FPGA) the time of processing

remains constant regardless of the total amount of memory
being processed.

In the developed software simulation model based on the
GPU cluster, a considerable amount of time is spent not so
much on the processor but on the exchange of messages
between the processor and the host program. The next stage
of development is planned to move to a hardware prototype of
the processor and possible modification of the architecture in
order to reduce the costs associated with the data transmitting.

REFERENCES

[1] R. Sedgewick and K. Wayne, Algorithms. 4th ed. Addison-Wesley, 2011.
992 p.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction
to algorithms. 3rd ed. London, England: The MIT Press, 2009. 1312 p.

[3] N. L. Verenik, A. I. Girel, Y. N. Seitkulov, M. M. Tatur and
H. P. Razhkova, “Cognitive information processing based on a parallel
processor,” 10th International Conference on Digital Technologies (DT
‘2014), pp.356–360, 2014.

[4] R. E. Tarjan, Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics. CBMS-NSF Regional Conference
Series in Applied Mathematics (Book 44), 1987. 140 p.

[5] A. V. Aho, J. E. Hopcroft and Jeffrey D. Ullman, The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974. 470 p.

[6] B. Tsilker and S. Orlov, Organizatsiya EVM i sistem: Uchebnik dlya
vuzov [Organization of computers and systems: Students textbook],
St. Petersburg, Piter, 2007. 668 p.

ПРЕДСТАВЛЕНИЕ СИСТЕМЫ
НЕПЕРЕСЕКАЮЩИХСЯ МНОЖЕСТВ И

РЕШЕНИЕ ЗАДАЧИ СВЯЗНОСТИ СРЕДСТВАМИ
АССОЦИАТИВНОГО ПРОЦЕССОРА

Вереник Н. Л., Татур М. М.
Белорусский государственный университет

информатики и радиоэлектроники,
г. Минск, Республика Беларусь

В статье кратко рассмотрены структуры данных и
алгоритмы для работы с системой непересекающихся
множеств. Предлагается использовать ассоциативный
процессор с оригинальной архитектурой для представ-
ления непересекающихся множеств и решения зада-
чи связности с помощью адаптированного алгоритма
быстрого поиска. Представленный подход позволяет
достичь константного времени выполнения базовых
операция поиска и объединения и линейной сложности
для обработки произвольной последовательности опе-
раций поиска и объединения.

178

