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Abstract—The problem under consideration is to check 
whether a given system of incompletely specified Boolean 
functions is implemented by a logical description with func-
tional indeterminacy that is represented by a system of con-
nected blocks each of which is specified by a system of com-
pletely or incompletely specified Boolean functions. SAT 
based verification methods are considered that formulate the 
verification problem as checking satisfiability of a conjunc-
tive normal form. 
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I. INTRODUCTION 

It is known currently, verification takes more than 
70% efforts spent in automated electronic design [1]. The 
objective of verification is to ensure that implemented and 
specified behaviors are the same. In a typical scenario, 
there are two structurally similar circuit implementations 
of the same design, and the problem is to prove their func-
tional equivalence. In contrast to that in the paper, the 
verification task is examined for the case, when desired 
functionality of the system under design is incompletely 
specified. Such a case usually occurs on early stages of 
designing when assignments to primary inputs of de-
signed device exist which will never arise during a normal 
mode of the device usage.  

We consider the verification problem for the case, 
when desired functionality is given in the form of a sys-
tem of incompletely specified Boolean functions (ISFs) 
and the compared functional description is given in the 
form of a multi-block structure that consists of connected 
blocks each of them represents a system of completely or 
incompletely specified Boolean functions. 

The approach to solve the verification task is investi-
gated, that is based on its reducing to SAT problem. 

II. PRELIMINARIES 

An ISF system F(x) = { f1(x), f2(x), …, fm(x) } (where 
x = (x1, x2, …, xn) is a vector) is represented as a mapping 
of n-dimensional Boolean space Bn into m-dimensional 
space {0,1,–}m, where the symbol “–” denotes don’t-care 
condition. Let us specify a system F(x) as a set IF of mul-
tiple-output cubes (u, t ) each of which is a pair of ternary 
vectors u and t (or conjunctions) of sizes n and m. The 
input part u is a cube in Bn or a set of minterms (elements 
of Bn), the output part t is a ternary vector of values of 
functions for the cube u. 

We are focusing on the case in which the first descrip-
tion is an ISF system and the second of the compared de-
scriptions is an implementation of the first one and is rep-
resented by some sort of multi-block structure. Further we 
consider two cases: 1) the structure has no indeterminacy 

and each its block is represented by a system of conjunc-
tive normal forms (CNF); 2) the structure has indetermi-
nacy and each its block is represented by ISF system. 

III. THE SUGGESTED APPROACH TO VERIFICATION 

The past ten years have seen efforts in developing 
commercial formal verification tools (by reducing to 
SAT) that provide more general results than traditional 
simulation methods. In a typical scenario, there are two 
structurally similar implementations of the same design, 
and the problem is to prove their functional equivalence 
[1]. In a modern combinational equivalence checking 
flow both networks to be verified are transformed into a 
single comparing circuit such that there is the constant 0 
on its output iff two original circuits are equivalent. To 
test whether the comparing circuit output be 1 or 0, its 
conventional conjunctive normal form (CNF) is produced 
applying the circuit-to-CNF conversion [1]. Two circuits 
under comparison are equivalent iff the comparing circuit 
conventional CNF is unsatisfiable (there is no satisfying 
assignment). 

The traditional approach cannot be applied for the 
considered case as at least one of compared functional 
descriptions can be incompletely specified. 

To reduce the verification problem to SAT we 
construct two CNFs P(F) and C(S). CNF P(F) describes 
all assignments contradictive to the first form (ISF 
system) and is called prohibitive CNF of the ISF system. 
CNF C(S) describes all possible assignments for the 
second form (multi-block structure), and it is called 
conventional CNF [1] in the case of the structure without 
indeterminacy (combinational circuit) or otherwise it is 
called permissible CNF that is some sort of the conven-
tional CNF for a structure with indeterminacy. 

Assertion. The multi-block structure implements ISF 
system if and only if CNF P(F)  C(S) is unsatisfiable [2, 
4]. 

A. SAT based verification: case 1 

A problem under discussion is to verify whether a 
given network implements the ISF system. It is true if it 
takes place for each multiple-output cube. In terms of 
network CNF this condition could be reformulated as 
follows: for every multiple-output cube (ui,

 ti)  IF a value 
assignment satisfying the conjunction uiti (i.e. contra-
dicting to ui,

 ti) is unsatisfying assignment for the network 
CNF. If ui = x1

i x2
i… xi

ni and ti = f1
i f2

i… fmi
i then the cube-

prohibitive CNF Pi consists of the ni + 1 clauses: 

Pi(x, f) = x1
i x2

i… xi
ni

 (f1
i f2

i … fmi
i). 

The ISF system prohibitive CNF P(F) is functionally 
equivalent to the function P1  P2 …  Pl. The formula 
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could be directly converted into a CNF form, but that is 
NP-hard problem. The method of linear complexity is 
proposed that is based on coding multiple-output cubes 
and their prohibitive CNFs using Boolean variables 
wi  w and codes in the form of disjunctions di = 
wi1

i1  wi2
i2 … wir

ir (ir  {0,1}, wir
1 = wir and 

wir
0 =wir). After encoding, we get the ISF system pro-

hibitive CNF 

P(x, f, w) = (P1
k  P2

k …  Pl
k)  Q(w), 

where Pi
k(x, f, w) = (x1

i  di)
 …  (xi

ni
  di)

 (f1
i  …fmi

i  
di) and the CNF Q(w) called as alternative CNF provides 
that the CNF P(x, f, w) will be satisfiable iff at least one 
CNF Pi  P(F) is satisfiable.  

To formulate the conditions the alternative CNF Q(w) 
must satisfy for the chosen cube-prohibitive CNF 
encoding, let denote by fQ and fdi the functions represented 
by Q(w) and di(w) and by UQ

1 and Udi
1 – their on-sets.  

Assertion [3]. Any alternative CNF Q(w) for a given 
encoding of cube-prohibitive CNFs must satisfy the 
following conditions: 

1) (
i
 fdi)  fQ = 0 or (

i
Mdi

1)  MQ
1 = ; 

2) (
ji
 fdi)  fQ  0 or (

ji
 Mdi

1)  MQ
1   for all j. 

The first condition ensures the CNF P(x, f, w)  C(S) 
be unsatisfiable when the circuit implements the analyzed 
ISF system, i.e. when all cube-prohibitive CNFs Pi(x, f) 
are unsatisfiable. The second condition ensures the CNF 
P(x, f, w) be satisfiable when the circuit do not implement 
the analyzed ISF system. Fulfillment of the second 
condition guaranties that there exists at least one 
assignment of coding variables that ensures satisfiability 
of Q(w) and all cube prohibitive CNFs Pi

k except the j-th 
one (that is satisfiable by the assumption). 

Two basic methods of encoding multiple-output cubes 
(satisfying the above Assertion) have been investigated: 
encoding by codes of unit [2] and logarithmic length [4]. 
The first method supposes to introduce as many coding 
variables wi as there exist multiple-output cubes in the ISF 
system specification IF. Usage of unary encoding gener-
ates the following expressions for Pi

k(x, f, w) and Q(w) 
satisfying the above Assertion: 

Pi
к(x, f, w) =  

     = (x1
i  wi)(x2

i  wi)
 … (xi

ni
  wi)(f1

i  …fmi
i  wi), 

Q(w) = w1
 w2

  … wl . 

Three verification methods are proposed [5]: based on 
successive, simultaneous and group testing multiple-
output cubes from IF. The first method formulates as 
many SAT problems as the number of cubes are there, the 
second formulates verification task as the only SAT prob-
lem (using coding the cubes as shown above), the third 
divides the overall set IF of multiple-output cubes into 
groups and formulates as many SAT problems as the 
number of groups are there. The group method is more 
effective because it allows 1) to achieve trade-offs be-
tween expenses on forming data for SAT-solver and SAT-
solver performance; and thereby 2) to reduce overall veri-
fication time [5]. 

B. SAT based verification: case 2 

Here we consider the verification problem for the 
case, when both compared descriptions are incompletely 
specified, i.e. the multi-block structure S has indetermina-

cy. Just as in the previous section, we formulate the veri-
fication problem as verifying whether CNF P(F)  C(S) is 
satisfiable [6]. Here С(S) is the permissible CNF that de-
scribes the set of admissible combinations of signals on 
all the nodes of the structure S blocks. The permissible 
CNF С(S) is the conjunction of permissible CNFs С(Bi) of 
its blocks or permissible CNFs С(Fi) of their ISF systems. 

Three methods of construction of a permissible CNF 
for an ISF system are proposed: one based on the para-
phrased representation of ISFs [7], and two based on the 
application of implicative conditions: implication and 
implication with condition coding methods [6]. The sim-
plest of them, the implication method, is based on permis-
sible CNF definition. 

Assertion [6]. The permissible CNF C(Fi) of an ISF 
system Fi

 (x) defined by a set of its multiple-output cubes 
si = (ui,

 ti) (i = 1, 2,…, r)  is generated by the formula: 

(u1
  t1)  (u2

  t2)  …  (ur
  tr). 

Having in view that ui = x1
i x2

i… xi
ni, ti

g = y1
i y2

i… ymi
i 

and (ui
  ti

 ) =ui
  ti =x1

i x2
i … xi

ni (y1
iy2

i… ymi
i)= 

=(x1
i x2

i … xi
ni 

 y1
i) …(x1

i  x2
i … 

xi
ni 

 ymi
i) we can easily obtain all permissible CNFs 

С(Fi) and then С(S). 

IV. EXPERIMENTAL RESULTS 

The program implementations of the mentioned veri-
fication methods were investigated on the sets of pseudo-
random pairs of descriptions: ISF system and multi-block 
structure implementing it (with or without indetermina-
cy). The experiments have shown that: 

1) the group size about 200 gives good enough results: 
group methods gain stably in efficiency compared with 
the methods of successive and simultaneous testing of 
multiple-output cubes, the win gain is about 35% over the 
method of simultaneous testing [5]; 

2) substantial reduction of variables, provided by loga-
rithmic encoding of multiple-output cubes, did not bring 
about substantial speedup of verification; 

3) despite the fact that the implication method is 
simpler, than that of implication with condition coding, 
and gives shorter CNFs, it has smaller speed. 
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