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На основе дрейф-диффузионной модели разработана программа расчета процессов 
переноса и нелинейной динамики колебаний в GaAs полупроводниках с эффектом Ганна. 
Показано, что нелинейное взаимодействие характеризуется умножением периода колебаний 
и возникновением странных хаотических аттракторов. 
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Introduction 

Self-oscillating systems are encountered in most branches of science and engineering. Gunn 
unstable semiconductor is one of the systems of this type, where dc voltage gives a rise to high-field 
domain dynamics and the well-known Gunn oscillations. The Gunn-effect devices, widely know as 
Gunn diodes, are capable of converting direct current power into microwave frequency power when 
they are coupled to the appropriate resonator. Typical applications for Gunn diode oscillators include 
local oscillators in the range from 10 GHz to above 120 GHz, voltage controlled oscillators, radar and 
communication transmitters. 

Having found a system with a natural oscillation due to travelling-wave motion, it is natural to 
ask whether harmonic forcing would lead to chaos with spatial structure. During the last decade the 
nonlinear dynamics of periodically forced Gunn devices has been investigated [1–8]. One of the 
frequently observed phenomena is phase locking of the transit Gunn oscillation to the periodical 
forcing. Among the observed phenomena also were period doubling, and chaotic response. In this 
paper we describe the nonlinear dynamics obtained numerically for 3-µm GaAs Gunn device. 

Description of the Gunn device model 

In this paper we consider the Gunn effect in a one-dimentional GaAs sample occupying 
0<x<L with the cathode and the anode being x=0 and x=L. The processes of electron transport 
in n+–n–n+ GaAs structures can be described by the drift-diffusion model, consisting of the current 
continuity and particle current relationships, and Poisson′s equation 
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where e is the electron charge, ε is the static dielectric constant,  is the equilibrium electron 
density, J(x,t) is the total current density, n(x,t) is the electron carrier density, E(x,t) is the local electric 
field distribution, υ(E) and D(E) are characteristics of the drift velocity and the diffusivity on electric 
field. The accurate cubic spline approximation of these characteristics was used in our simulation. 
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The device terminal current I(t) is partitioned into a particle current and a displacement current 
and is equal to 

dt
)t(dVCdx)t,x(J

L
S)t(I diode

L

+= ∫
0

, (4) 

where S is the cross-sectional area, L is the length of the transit region, Cdiode is the static diode 
capacitance. V(t) is the voltage applied to a GaAs structure, consisting of the dc voltage Vdc and the 
external microwave signal with amplitude Vac and frequency fd : 

V(t)=Vdc+Vac sin(2π fd·t). (5) 

To complete the mathematical description, specifications of initial conditions at t=0, and 
boundary conditions at both cathode (x=0) and anode (x=L) locations, are required. Initial conditions 
(t=0) are: 

n(x, 0)=n0 (x), 

E(x,0)=Vdc /L. 

The boundary conditions are: 

∂2n (x, t)/∂ x2=0 at x=L. 

n(0, t)=n0 (x), at x=0, 

φc(0, t)=V(t), 

φa(L, t)=0. 

Poisson΄s equation (3) and the continuity equation (1) comprise a system of coupled nonlinear 
partial differential equations. They were integrated numerically using a Runge-Kutta scheme [9]. 

The application of an external voltage Vdc exceeding a high-field threshold value Vth causes 
current transit oscillation with frequency f0 in the external circuit. The external microwave signal 
essentially changes and complicates the oscillation dynamics. 

Numerical simulation 

In all simulations to be discussed, we have fixed the following parameters of the n-GaAs 
sample: L=3 µm, S=10−5 cm2, Cdiode=0,036 pF, threshold voltage Vth=0,77 V, homogeneous doping 
density profile with no(x)=5⋅1015 cm−3 and with doping notch 0,25 µm length and 3,5⋅1015 cm−3 doping 
density, located 0,3 µm from cathode. For dc bias below the threshold we find steady state, non-
oscillatory behaviour. Above threshold, self-sustained periodic oscillations occur. The typical shape of 
the natural oscillation with frequency f0≈27,43 GHz is shown in figure 1 (A=Vac/(Vdc–Vth)=0). 
The space-time electric field and electron concentration characteristics for this case are given in [6]. 
Figures 2 and 3 show the attractor and the Poincare section of this oscillation. To our surprising we 
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can see that they have non-trivial strange geometrical structure. Taking into consideration that the 
calculated correlation dimension is approximately ν=1,08 and the computed first Lyapunov exponent 
value is nearly 0.5 one can conclude that we deal with the oscillation which formally can be defined as 
chaotic [9–12]. Here chaotic refers to exponential divergence of nearby trajectories and strange means 
that the dimension of the attractor is not an integer. We can also see that, on the whole, the oscillation 
shape does not change. It can be supposed that a strong convergence during fairly short time intervals 
is outweighed by the divergence of nearby trajectories that occurs within other time intervals. This 
example shows that the evolutionary stability and chaotic dynamics are perfectly compatible. 

Now, we turn to the study of the responses of this self-oscillatory system to periodically 
varying applied voltage. This problem is related to the operation of Gunn diodes inserted in a 
microwave resonant circuit [7]. In figure 4 one can see that the influence of the external forcing leads 
to the specific modulation of the natural Gunn oscillation. The resultant shape is a sequence of 
complicated asymmetrical oscillations, which seem almost periodic and similar to polar-modulated 
ones [6, 12]. Figure 5 shows that the increase of amplitude leads to the successive multiplication of 
natural oscillation period N times, where N=1, 2, 3…35. Denoting the period of the resultant 
oscillations T, we have that T≈N⋅Td, where Td=1⁄fd. The shape of the curve is similar to a staircase 
which length of steps (stable regions) is gradually decreases with growth of microwave amplitude A. 
The transition between next stable regions gives rise to narrow windows of non-periodic responses 
like shown in figure 5 and more complicated oscillations. The correlation dimension values of the 
resultant oscillations are less than two. 

As we can see the competition between the natural oscillations due to the space-charge 
domain dynamics and the periodic forcing can result in low-dimensional fractal oscillations. 
It is important that the current forms and bifurcation processes obtained numerically agree closely with 
experimental data determined earlier using a millimetre-wave Gunn oscillator [7]. It gives the hope 
that the model used reflects the real mechanism of nonlinear interaction in Gunn devices. Figures 6, 7 
show the attractor and the Poincaré sections of the current oscillation at A=0.605 (see figure 4). 
The calculations showed that the first Lyapunov exponent was positive and the correlation dimension 
was about 1.95. It means that we also deal with the chaotic behaviour. Finally in figure 8 we present 
the return maps of this oscillation. To our surprise one can see that after fairly long period of 
comparative stability the oscillation becomes more irregular. The comparison of figures 8,b and 8,c 
shows that the part of the return map in figure 8,b marked R is practically the full return map shown in 
figure 8,c. So we can see that the used model demonstrates the some transience from one to another 
random state. Nevertheless, even by the end of the calculation time the oscillation has a high 
predictability. 

Conclusion 

It was shown that the drift-diffusion transport model of the Gunn-effect structure could 
reproduce strange chaotic behaviour. Nevertheless, the time-dependence of the current keeps a very 
high level of predictability. It fails to detect the chaotic nature of the system. The examples given show 
that the evolutionary stability and chaotic dynamics are fairly well compatible. This phenomenon 
connected not only with the applying of the external sinusoidal signal, that leads to the suppression or 
maintenance of the travelling charge layers. It turned out that the transit Gunn oscillation also 
reproduces the low-dimensional strange chaotic behaviour. It is not an ordinary phenomenon and we 
connect it with the complex form of the drift velocity and diffusivity characteristics on electric field. 
However, we want to emphasize that the obtained results are only preliminary and do not give detailed 
information about reasons of such behaviour. 
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PERIOD MULTIPLICATION AND CHAOTIC DYNAMICS 
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V. SHALATONIN, V. MISHCHENKO 

Abstract 

A drift-diffusion Gunn effect model is used to analyse complex behaviour of the natural and 
driven Gunn oscillations. The results of the numerical simulation are presented. It was shown that 
Gunn devices might exhibit quite complicated nonlinear dynamics, such as period multiplication and 
strange chaotic attractors. 
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