2007 ОКТЯБРЬ-ДЕКАБРЬ № 4 (20)

ЭЛЕКТРОНИКА

УДК 621.316.726.078

ВЕРОЯТНОСТНЫЙ АНАЛИЗ ПОИСКОВОЙ СИСТЕМЫ ФАЗОВОЙ АВТОПОДСТРОЙКИ ЧАСТОТЫ

А.А. ЛОБАТЫЙ, В.Л. БУСЬКО, АЛЬКАТАУНА ХИКМАТ АХМЕД

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 25 мая 2007

На основе теории марковских случайных процессов рассматривается задача оценки вероятности перехода системы фазовой автоподстройки частоты из режима биений в режим удержания при учете инерционности системы.

Ключевые слова: разность фаз, срыв синхронизма, плотность вероятности, временной интервал.

Введение

Широкое распространение в радиоэлектронике получили системы автоматической автоподстройки частоты, представляющие собой разновидность систем синхронизации. Задачей их является автоматическая регулировка скорости квазипериодических процессов с целью достижения определенных фазовых соотношений между ними [1, 2]. Эти системы используются в телевидении, радиолокации, радионавигации, а также в различных следящих системах. Среди них следует выделить системы фазовой автоподстройки частоты (ФАПЧ), у которых сигнал ошибки связан не с разностью частот, а с разностью фаз ф подстраиваемого и эталонного генераторов, что в стационарном режиме обеспечивает остаточную разность фаз, а не частот, как в системах частотной автоподстройки.

Такие системы могут работать в различных режимах, среди которых следует выделить следующие: режим удержания, когда частоты эталонного и подстраиваемого генераторов равны; режим биений, для которого характерно непрерывное нарастание в среднем разности фаз подстраиваемого и эталонного генераторов; режим захвата, когда режим биений переходит с течением времени в режим удержания или квазисинхронизма.

Задачи вероятностного анализа режима захвата решаются, как правило, исходя из условия рассмотрения вероятности первого достижения фазовой координатой ϕ границ области захвата (области работоспособности). В реальных ФАПЧ переход в режим захвата, так же как и срыв синхронизма, не может произойти мгновенно. Инерционность перехода системы из одного состояния в другое, может быть приближенно охарактеризована минимальным интервалом времени τ_c пребывания разности фаз внутри границ области работоспособности системы, необходимым для перехода ее в другое (работоспособное) состояние. Учет инерционности системы при вероятностном анализе смены режима ее работы позволяет более полно учесть реальные физические свойства.

Постановка задачи

Основное дифференциальное уравнение системы ФАПЧ имеет вид [3]

$$p\varphi + \Omega_{v}K(p)F(\varphi) = \Omega_{u}, \qquad (1)$$

где $\Omega_{_{\it H}}$ — начальная расстройка подстраиваемого генератора относительно эталонного; K(p) — коэффициент передачи фильтра в операторной форме; символ p означает дифференцирование по времени; ϕ — мгновенное значение разности фаз генераторов; $F(\phi)$ — нормированная характеристика фазового детектора; $\Omega_{_{\it Y}}$ — полоса удержания, т.е. максимально возможная расстройка, которую может компенсировать цепь управления.

Для системы ФАПЧ, находящейся под воздействием флуктуационных возмущений для случая, когда Ω_v =const и K(p)=1, уравнение (1) можно записать в виде

$$\frac{d\varphi}{dt} = \Omega_{n} - \Omega_{y} \cos \varphi + n(t) , \qquad (2)$$

где n(t) — флуктуационное воздействие;

$$n(t) = \frac{d\varphi_{\mathcal{F}}}{dt} - \frac{\Omega_{y}}{U_{\mathcal{F}}} \left[A(t)\cos(\varphi - \varphi_{\mathcal{F}}) + C(t)\sin(\varphi - \varphi_{\mathcal{F}}) \right], \tag{3}$$

 $U_{\Im \Gamma}$ и $\varphi_{\Im \Gamma}$ — случайные функции времени, характеризующие законы модуляции амплитуды и фазы эталонного сигнала; $A(t)=E_{NI}(t)\cos(\theta), C(t)=E_{NI}(t)\sin(\theta)$ — косинусоидальная и синусоидальная составляющие огибающей $E_{NI}(t)$ входного шума N_I , θ — его фаза. Известно, что при действии шума на систему ФАПЧ переход ее из режима биений в режим синхронизации осуществляется плавно, а не скачкообразно, как при отсутствии случайных возмущений, когда разность ваз φ попадает в область окрестности точки устойчивого равновесия U_{φ} =[φ = φ_{0p} - 2π , φ = φ_{0p} - 2π] и не выходит из нее в течение времени τ_c .

Определение вероятности захвата

В реальных системах ФАПЧ время корреляции $\tau_{\rm k}$ случайных воздействий значительно меньше времени установления $\tau_{\rm y}$ координаты $\varphi\left(\tau_{\rm y}\approx 1/\Omega_{\rm y}\right)$. В этом случае, как показано в [3], исходный процесс близок по распределению к марковскому и для плотности вероятности $f(\varphi,t)$ координаты φ справедливо уравнение Фоккера–Планка–Колмогорова (ФПК), которое для функции $f(\varphi,t)$ имеет вид [2]

$$\frac{\partial f(\varphi,t)}{\partial t} = \frac{\partial}{\partial \varphi} \pi(\varphi,t), f(\varphi,t_0) = f_0(\varphi_0), \tag{4}$$

где $\pi(\varphi,t)$ — плотность потока вероятности вида

$$\pi(\varphi,t) = A(\varphi,t)f(\varphi,t) - \frac{1}{2}\frac{\partial}{\partial \varphi}B(\varphi,t)f(\varphi,t). \tag{5}$$

Как видно из уравнения (4), оно полностью определяется своими локальными характеристиками — коэффициентом сноса $A(\varphi,t)$ и коэффициентом диффузии $B(\varphi,t)$, которые в соответствии с выражениями (2) и (3) вычисляются по формулам

$$A(\varphi, t) = \Omega_{y} - \Omega_{y} \cos \varphi, \tag{6}$$

$$B(\varphi,t) = \int_{-\infty}^{\infty} \left[\frac{\Omega_y^2}{U_{2F}^2} \sigma_{N1}^2 R_{N1}(\tau) + \sigma_1^2 R_1(\tau) \right] d\tau,$$
 (7)

где σ_{N1}^2 , σ_1^2 — дисперсии входного шума N_I и процесса $p\phi$ соответственно; $R_{N1}(\tau)$ и $R_1(\tau)$ — коэффициенты корреляции входного шума, смещенного на нулевую частоту, и процесса $p\phi$ соответственно.

Если время функционирования системы $t_{\hat{e}}$ равно времени перехода ФАПЧ из режима биений в режим синхронизации, то задача определения вероятности захвата сводится к задаче невыхода разности фаз ϕ из области U_{φ} в течение времени $\tau_c = t_{\kappa} - t_0$ при условии нахождения его в области U_{φ} в начальный момент времени t_0 .

В действительности время функционирования системы $\tau_c = t_\kappa - t_0$ больше времени захвата, поэтому следует рассмотреть последовательность интервалов $\tau_c = t_{i+1} - t_i$ (i=0,1...k-1), $k=t_\kappa-t_0/\tau_c$ и для каждого момента времени t_i и интервала τ_c определить вероятность захвата.

Обозначим вероятность нахождения ϕ в области U_{φ} в каждый текущий момент времени t_i через $P_1(t_i) = P_1(\phi(t_i) \in U_{\varphi})$. Определим эту вероятность по формуле

$$P_1(t_i) = \int_{U_{\sigma}} f(\varphi, t_i) d\varphi, \qquad (8)$$

где $f(\varphi,t_i)$ — решение уравнения (4) при $f(\pm \infty,t)=0$.

Вероятность невыхода ϕ из области U_{ϕ} в течение времени τ_{c} обозначим через $P_{2}(t_{i}+\tau_{c}|\phi(t_{i})\in U_{\phi})$. В этом случае вероятность $P(t_{i+1}-t_{i})$ захвата ϕ поисковой системой ФАПЧ с учетом вероятности срабатывания на интервале $t_{i+1}-t_{i}=\tau_{c}$ определяется по формуле [5]

$$P(t_{i+1} - t_i) = P_1(t_i) P_2(t_i + \tau_c | \varphi(t_i) \in U_{\omega}). \tag{9}$$

Для определения вероятности P_2 следует проинтегрировать уравнение ФПК для плотности вероятности распределения не поглощенных реализаций $f^{(1)}(\phi,t)$ с учетом полного поглощения на границе области U_{ϕ} или уравнение Понтрягина. Воспользуемся методикой, изложенной в [4], для определения $f^{(1)}(\phi,t)$ из обобщенного уравнения ФПК с введением функций поглощения вместо границ:

$$\frac{\partial f^{(1)}(\varphi,t)}{\partial t} = -\frac{\partial}{\partial \varphi} \pi^{(1)}(\varphi,t) - \frac{\dot{P}_2}{P_2} f^{(1)}(\varphi,t) - \mathcal{G}(X,t), \qquad (10)$$

где $\mathcal{G}(\varphi,t)$ — нормированная функция поглощения; $f^{(1)}(\pm\infty,t)=0$; $\pi^{(1)}(\varphi,t)$ — вектор плотности потока вероятности вида

$$\pi^{(1)}(\varphi, t) = A(\varphi, t) f^{(1)}(\varphi, t) - \frac{1}{2} \left[\frac{\partial}{\partial \varphi} B(\varphi, t) f^{(1)}(\varphi, t) \right]. \tag{11}$$

Функция поглощения реализаций процесса на границе R_{u} области U_{ϕ} имеет вид

$$\mathcal{G}(\varphi,t) = \delta(R_u - \varphi)\pi^{(1)}(\varphi,t). \tag{12}$$

Уравнение (10) следует интегрировать при начальном условии на каждом интервале:

$$f^{(1)}(X,t_i) = \frac{1}{P_1} f(\varphi,t). \tag{13}$$

Интегрируя уравнение (10) по φ в бесконечной области, получим уравнение для P_2 :

$$\dot{P}_2 = -q(t)P_2, \tag{14}$$

где q(t) имеет вид

$$q(t) = \int_{-\infty}^{\infty} \vartheta(\varphi, t) d\varphi, \tag{15}$$

q(t) — интенсивность поглощения реализаций процесса $\phi(t)$, численно равная значению плотности потока вероятности непоглощенных реализаций, вычисленной на границе поглощающей области $q(t) = \pi^{(1)}(R_u, t)$.

Решение уравнения (14) на интервале $[t_i, t_i + \tau_c]$ при начальном условии $P_2(t_i) = 1$ следующее:

$$P_{2}(t_{i} + \tau_{c} | \varphi(t_{i}) \in U_{\varphi}) = \exp\left[-\int_{t_{i}}^{t_{i} + \tau_{c}} q(t)dt\right].$$
(16)

Таким образом, в каждый текущий момент времени t_i рассматриваются две плотности вероятности $f(\varphi,t_i)$ и $f^{(1)}(\varphi,t_i)$. На рис. 1 показаны сечения этих плотностей при задании области U_{φ} в виде поглощающих границ интервала $[-\gamma,\gamma]$ фазовой координаты $\varphi(t)$.

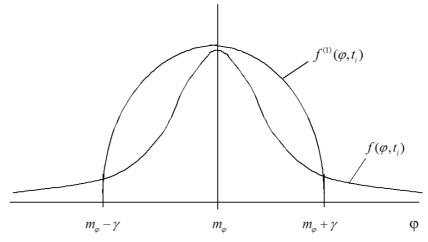


Рис. 1. Сечения плотностей вероятности

При времени функционирования системы $t_k - t_0 > \tau_C$ следует рассмотреть $k = (t_k - t_0) / \tau_C$ временных интервалов, на каждом из которых события захвата являются независимыми, а вероятность их определяется формулой (9). Тогда вероятность захвата $P_3(t_r)$ к моменту времени t_r определяется по формуле

$$P_{3}(t_{r}) = 1 - \prod_{i=1}^{r} \left\{ 1 - P_{1}(t_{i}) P_{2}(t_{i} + \tau_{\Pi} | \varphi(t_{i}) \in U_{\varphi}) \right\}, \tag{17}$$

$$r = 0...k - 1$$
; $k = (t_k - t_0) / \tau_0$

В соответствии с формулой (17) вероятность $P_3(t_r)$ является дискретной возрастающей функцией момента времени t_r . Вероятность того, что захват произойдет к произвольному текущему моменту времени t_r который не совпадает с t_r , определяется интерполяцией (экстраполяцией) значений $P_3(t_r)$.

Существующие точные методы решения задачи невыхода фазовой координаты за границы области U_{φ} применимы лишь в редких случаях для простейших систем. Приближенный алгоритм решения данной задачи основывается на гауссовой аппроксимации плотности вероятности $f(\varphi,t)$ в бесконечной открытой области фазовой переменной φ и усеченной гауссовой для $f^{(1)}(\varphi,t)$ в области захвата U_{φ} (рис. 2).

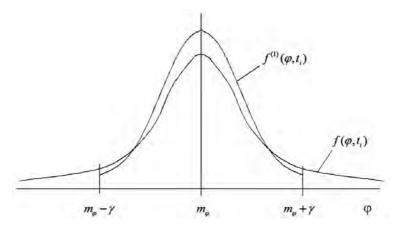


Рис. 2. Сечения плотностей вероятности при гауссовой аппроксимации

Для определения $f(\varphi,t)$ следует вычислить математическое ожидание $m_{_{\! arphi}}(t)=M[\varphi(t)]$ и дисперсию $D_{_{\! arphi}}(t)=M[\varphi^2(t)]$ из линеаризованных уравнений:

$$\dot{m}_{\alpha} = F_0(m_{\alpha}, D_{\alpha}, t), \ m_{\alpha}(t_0) = m_{\alpha 0},$$
 (18)

$$\dot{D} = 2K_F(m_{\varphi}, D_{\varphi}, t)D_{\varphi} + h^2(m_{\varphi}, D_{\varphi})G_{\varphi}(t), \quad D_{\varphi}(t_0) = D_{\varphi 0}, \tag{19}$$

где $F_0(m_{\varphi},D_{\varphi},t)$ — статистическая характеристика нелинейности F — правой части уравнения (1); $K_F(m_{\varphi},D_{\varphi},t)$ — статистический коэффициент усиления. Для гауссовой плотности вероятности $f(\varphi,t)$ по формуле (8) при U_{φ} со сторонами α , β получим

$$P_1(t_i) = \int_{\alpha}^{\beta} \frac{1}{\sqrt{2\pi D}} \exp\left[-\frac{(\varphi - m_{\varphi})^2}{2D}\right] d\varphi.$$
 (20)

Плотность вероятности $f^{(1)}(\varphi,t)$ зададим усеченной гауссовой в следующем виде:

$$f^{(1)}(\varphi,t) = \begin{cases} \frac{1}{P_1(t)} f^1_{10}(\varphi,t), & \varphi \in U_{\varphi}, \\ 0, & \varphi \notin U_{\varphi}, \end{cases}$$
(21)

где $f^1_{10}(\varphi,t)$ — гауссова плотность вероятности с вектором математического ожидания $m'_{\varphi}(t)$ и дисперсией $D'_{\varphi}(t)$, определяемыми из следующих уравнений на каждом i-м интервале $[t_i,t_i+ au_C]$:

$$\dot{m}'_{\varphi} = \varphi_0(m'_{\varphi}, D'_{\varphi}, t) - \int_{-\infty}^{\infty} \varphi \mathcal{G}(\varphi, t) d\varphi - q(t) m'_{\varphi} \quad m'_{\varphi}(t_i) = m_{\varphi}(t_i) , \qquad (22)$$

$$\dot{D}'_{\varphi} = 2K_F(m'_{\varphi}, D'_{\varphi}, t)D' + h^2(m'_{\varphi}, D'_{\varphi})G_{\varphi}(t) - \int_{-\infty}^{\infty} \varphi^2 \,\vartheta(\varphi, t)d\varphi - q(t)D' \quad D'(t_i) = D'(t_i) \,. \tag{23}$$

Интегрируя уравнения (22), (23) при учете формулы (21) и $P_2(t_i) = 1$, определяем $P_2(t_i + \tau_C | \varphi t_i) \in U_{\varphi}$) по формуле (16). После вычисления $P_1(t_i)$ и $P_2(t_i + \tau_C | \varphi t_i) \in U_{\varphi}$) на каждом интервале определяем вероятность $P_3(t_r)$ по формуле (17).

Пример

В качестве примера рассмотрим одномерную систему, эволюция которой характеризуется уравнением (2), преобразованном к виду

$$\dot{\varphi} = a\varphi + \xi, \quad \varphi(t_0) = \varphi_0, \tag{24}$$

где ξ — белый шум интенсивности G и М[ξ]=0. Область захвата U_{φ} одномерная и определена как $\alpha \leq \varphi \leq \beta$. Плотность вероятности распределения фазовой координаты φ при гауссовом начальном условии также гауссова $f(\varphi,t)$ с параметрами $m_{\varphi}(t)$, $D_{\varphi}(t)$. Тогда вероятность $P_1(t_i)$ в соответствии с (20) будет найдена по формуле

$$P_{1}(t_{i}) = \Phi \left[\frac{\beta - m_{\varphi}(t_{i})}{\sqrt{D_{\varphi}(t_{i})}} \right] - \Phi \left[\frac{\alpha - m_{\varphi}(t_{i})}{\sqrt{D_{\varphi}(t_{i})}} \right], \tag{25}$$

где $\Phi \left(\ldots \right)$ — функция Лапласа, а $m_{_{\! arphi}}(t)$ и $D_{_{\! arphi}}(t)$ определяются из уравнений

$$\dot{m}_{\varphi} = am_{\varphi} \quad m_{\varphi}(t_0) = m_{\varphi 0}, \tag{26}$$

$$\dot{D}_{\varphi} = 2aD_{\varphi} + G, \quad D_{\varphi}(t_0) = D_{\varphi_0}.$$
 (27)

Плотность вероятности $f^{(1)}(\varphi,t)$ в соответствии с допущением (21) представим в виде

$$f^{(1)}(\varphi,t) = \begin{cases} \frac{1}{\sqrt{2\pi D_{\varphi}'}} \exp\left[-\frac{(\varphi - m_{\varphi}')^{2}}{2D_{\varphi}'}\right], & \alpha < \varphi < \beta, \\ 0, & \varphi \le \alpha, \varphi \ge \beta. \end{cases}$$
(28)

Для определения $P_2(t)$ в соответствии с (14) получаем уравнение

$$\dot{P}_{2} = [-\pi^{(1)}(\beta, t) - \pi^{(1)}(\alpha, t)]P_{2}, \quad P_{2}(t_{i}) = 1, \tag{29}$$

где

$$\pi^{(1)}(\varphi,t) = \alpha f^{(1)}(\varphi,t) - \frac{1}{2} \frac{\partial}{\partial \varphi} [Gf^{(1)}(\varphi,t)]. \tag{30}$$

Для определения $m_{\varphi}'(t)$ и $D_{\varphi}'(t)$ запишем уравнения вида (22), (23):

$$\dot{m}'_{\varphi} = am'_{\varphi} - \beta \pi^{(1)}(\beta, t) - \alpha \pi^{(1)}(\alpha, t) - \frac{\dot{P}_{2}}{P_{2}} m'_{\varphi}, \quad m'_{\varphi}(t_{i}) = m_{\varphi}(t_{i}),$$
(31)

$$\dot{D}_{\phi}' = 2aD' + G - (\beta - m_{\phi}')^2 \pi^{(1)}(\beta, t) - (\alpha - m_{\phi}')^2 \pi^{(1)}(\alpha, t) - \frac{\dot{P}_2}{P_2} D_{\phi}' \frac{\dot{P}_2}{P_2} D', \quad D_{\phi}'(t_i) = D_{\phi}'(t_i). \quad (32)$$

Производную $\partial f^{(1)}(\varphi,t)/\partial \varphi$ на границах α и β вычисляем в соответствии с рекомендацией [5] так:

$$\frac{\partial}{\partial \varphi} [f^{(1)}(\varphi, t)]_{\varphi = \beta} = \frac{f^{(1)}(\beta - \Delta \varphi, t)}{\Delta \varphi},$$

где $\Delta \varphi$ — малое приращение координаты φ .

Расчеты были проведены при следующих исходных данных: a=3; G=2; α =-0,5; β =0,5; $\Delta \phi$ =0,05; τ_c =0,1 c; t_k =0,4 c.

На рис. 3 изображен график зависимости $P_1(t)$.

На рис. 4 изображены графики $P_2(t)$ на интервалах времени $(t_{i+1}-t_i)$, i=1...4.

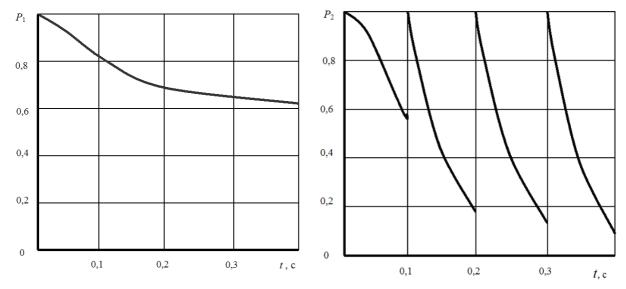
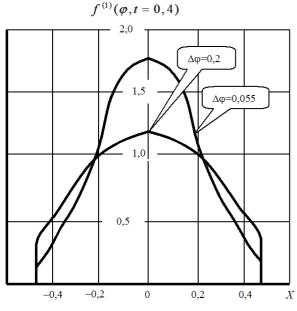


Рис. 3. График зависимости $P_1(t)$

Рис. 4. Графики зависимостей $P_2(t)$ на фиксированных интервалах времени

На рис. 5 изображены графики $f^{(1)}(\varphi,t=0,4)$ для случаев $\Delta \varphi$ =0,05 и $\Delta \varphi$ =0,2. Из графиков следует, что чем меньше приращение $\Delta \varphi$, тем ближе к нулю плотность вероятности не поглощенных реализаций на границе (граничные условия ближе к заданным).

На рис. 6 изображены значения $P_3(t_r) = P_3(t)$, r=1...4, соединенные интерполяционной кривой.



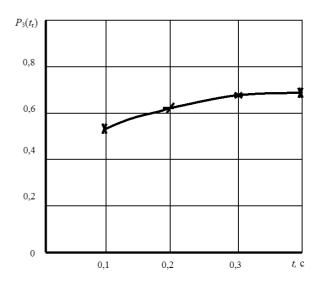


Рис. 5. Графики зависимости $f^{(1)}(\phi)$ при различных $\Delta \phi$

Рис. 6. Значения $P_3(t_r)$, соединенные интерполяционной кривой

Заключение

Результаты расчетов показывают, что при вероятностном анализе поисковой системы ФАПЧ необходимо учитывать ее инерционность, поскольку неучет этого фактора приводит к существенному изменению вероятностной картины процесса и может привести к ошибкам при принятии решения о качестве объекта.

Таким образом, приведенная выше методика позволяет приближенно решать ряд практических задач вероятностного анализа захвата синхронизма в инерционных системах ФАПЧ. При этом точность полученного решения тем выше, чем меньше τ_c по сравнению со временем работы системы.

PROBABILISTIC ANALYSIS OF SEARCH SYSTEMS OF PHASE AUTO TUNING OF FREQUENCY

A.A. LOBATY, V.L. BUSKO, HEKMAT AHMAD ALQATAWNEH

Abstract

Based on the theory of Markov processes considered objective evaluation of the likelihood of the transition automatic phase-locked control system of speed-frequency, from the beating to retention mode in view of inertia of the system

Литература

- 1. Батура М.П. Дискретные системы с фазовым управлением Минск, 2002.
- 2. Стеклов В.К., Коробко В.В. Итерационные системы фазовой автоподстройки. Киев, 2004.
- 3. Шахгильдян В.В., Ляховкин А.А. Системы фазовой автоподстройки частоты. М., 1972.
- 4. Казаков И.Е., Артемьев В.М., Бухалев В.А. Анализ систем случайной структуры. М., 1993.
- 5. Казаков И.Е., Лобатый А.А. // Автоматика и телемеханика. 1986. № 3. С. 74–79.