2009 № 6 (44)

УДК 621.396.933:527.8

АДАПТИВНАЯ ЗАЩИТА ИЗМЕРИТЕЛЕЙ СЛОЖНЫХ СИГНАЛОВ ОТ ПОМЕХ НА ОСНОВЕ ПРИЗНАКОВ ПРОЕКЦИОННОГО ПРЕОБРАЗОВАНИЯ

Д.Л. ХОДЫКО, С.Б. САЛОМАТИН

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 23 июня 2009

Рассмотрен алгоритм работы адаптивного фильтра при смене структуры корреляционной матрицы помехового сигнала. Для снижения времени адаптации предложен алгоритм выбора весовых коэффициентов адаптивного фильтра на основе признаков и идентификации помехового сигнала. На примере следящего измерителя параметров сигналов системы спутниковой навигации GPS показана эффективность работы алгоритма выбора весовых коэффициентов фильтра.

Ключевые слова: адаптивный фильтр, проекционное преобразование, авторегрессионая модель, признаки.

Введение

К современным РЭС, работающим в сложной сигнально-помеховой обстановке при отношении сигнал/шум $q_{\it SNR} < 1$ предъявляются высокие требования к помехозащищенности. Частотно-временная адаптивная фильтрация позволяет снизить влияние помеховых сигналов, при этом необходимо, чтобы отношение помеха/шум $q_{\it JNR} > 1$. Воздействие помех с различной корреляционной матрицей приводит адаптивный фильтр в режим адаптации (обучения) [1], вследствие чего помеховые сигналы попадают в следящие измерители и воздействуют на демодуляторы.

При меняющихся энергетических ($q_{\it JNR}$ < 1 или $q_{\it JNR}$ > 1) и структурных параметрах помехи к адаптивному алгоритму предъявляется требование быстро адаптироваться и подавить помеху.

Одним из способов снижения времени адаптации является алгоритм с кусочнонепрерывным управлением параметра сходимости адаптивного фильтра [2].

Предлагаемый алгоритм предполагает идентификацию помеховых сигналов обучаемым классификатором по вычисленным признакам и выбор весовых коэффициентов фильтра для данной помехи. Признаки, полученные по результатам спектрального анализа и собственных чисел корреляционной матрицы выходного сигнала коррелятора, не позволяют идентифицировать помехи. В качестве основы для признаков должны выступать проекционные преобразования корреляционной матрицы, которые совместно с собственными значениями позволяют получить тонкую структуру помехи.

Модели сигналов

Аддитивная смесь полезного сигнала S nT_d , помехи $J(nT_d)$ и $\eta(nT_d)$ шума подается на вход адаптивного фильтра

$$y(nT_d) = S nT_d + J(nT_d) + \eta(nT_d),$$

где $\eta(nT_d)$ — последовательность центрированных независимых случайных величин с дисперсией σ_η^2 и нулевым средним.

Математическая модель сигнала S nT_d имеет вид:

$$S nT_d = \alpha(nT_d)A_sG(n-v)T_d D nT_d \cos \omega_s nT_d + \psi_s(nT_d)$$
,

где $\alpha(nT_d)$ — коэффициент, учитывающий влияние канала; A_s , ω_s и $\psi_s(nT_d)$ — амплитуда, частота и закон изменения частоты сигнала соответственно; G nT_d — псевдослучайная последовательность (ПСП) с длительностью дискрета T_{PN} ; v — величина задержки; D nT_d — информационное сообщение; T_d — время дискретизации; n — дискретный индекс времени.

Математическое выражение помехового сигнала с изменяемыми параметрами имеет вид

$$J(nT_d) = A_I(nT_d)g \quad nT_d - \Psi_T \quad lT_I \quad \cos \omega_I nT_d + \Psi_{\odot} \quad nT_d \quad , \tag{1}$$

где $A(nT_d)$ — закон амплитудной модуляции; g nT_d — закон модуляции дискретной псевдослучайной последовательностью; T_J — длительность дискета ПСП; Ψ_T nT_J — закон управления задержкой; ω_J — центральная частота; $\Psi_{\varpi}(nT_d)$ — закон изменения частоты.

Модель 1. Широкополосная помеха $J_{BB}(nT_d)$ с линейным изменением частоты. Законы изменения определяются как A_J $nT_d=A_J$, Ψ_T $lT_J=lT_J$, Ψ_{ϕ} $nT_d=\frac{2\pi\alpha}{2}n^2T_d^2$, α — скорость изменения частоты. Модель широкополосного сигнала имеет вид

$$J_{BB}(nT_d) = A_J g \left((n-l)T_d \cos \left(\omega_J n T_d + \frac{2\pi\alpha}{2} n^2 T_d^2 \right). \tag{2}$$

Модель 2. Узкополосная помеха с линейным изменением частоты (ЛЧМ) $J_{NB}(nT_d)$. Временные функции задаются как A_J $nT_d=A_J$, Ψ_T $lT_J=0$, Ψ_ϕ $nT_d=\frac{2\pi\alpha}{2}n^2T_d^2$. Кодовая последовательность g $nT_J=1$. Выражение для $J_{NB}(nT_J)$ принимает вид

$$J_{NB}(nT_d) = A_J \cos\left(\omega_J nT_d + \frac{2\pi\alpha}{2}n^2 T_d^2\right). \tag{3}$$

Отклик сигнала $y(nT_d)$ на выходе блока корреляционной обработки

Неподавленный помеховый сигнал с выхода адаптивного фильтра совместно с полезным сигналом и шумом попадается на вход блока корреляционной обработки (рис. 1).

Блок корреляционной обработки включает синфазный $\,y_{_{I}}\,$ и квадратурный $\,y_{_{Q}}\,$ каналы:

$$\begin{split} y_I &= T_d \sum_{n=0}^{N_d-1} F \ J(nT_d) + \eta(nT_d) + S(nT_d) \ A_0 G \ (n-\P) T_d \ \cos \ \omega_0 n T_d + \P_S(nT_d) \ , \\ y_Q &= T_d \sum_{n=0}^{N_d-1} F \ J(nT_d) + \eta(nT_d) + S(nT_d) \ A_0 G \ (n-\P) T_d \ \sin \ \omega_0 n T_d + \P_S(nT_d) \ , \end{split}$$

где N_d — количество накапливаемых отсчетов; $F[\]$ — оператор свертки сигнала с импульсной характеристикой фильтра h nT_d , полоса пропускания которого равна $1/T_{PN}$; $\mbox{\ensuremath{\not{\in}}}$ и $\mbox{\ensuremath{\not{\oplus}}}_S(nT_d)$ — экстраполированные на интервале накопления оценки задержки ПСП и частоты; A_0 и ω_0 — амплитуда и частота опорного сигнала.

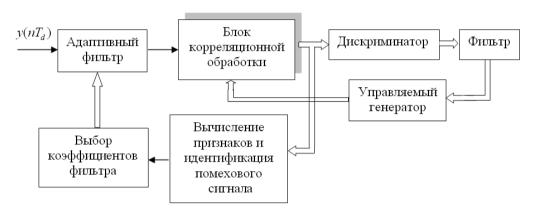


Рис. 1. Следящий измеритель с управляемыми коэффициентами адаптивного фильтра

Обозначим $z_{\scriptscriptstyle J}=y_{\scriptscriptstyle I}+jy_{\scriptscriptstyle Q}$, тогда комплексное напряжение коррелятора имеет вид

$$z_{J} = 0.5A_{0}T_{d}\sum_{n=0}^{N_{d}-1}G(n-\mathbf{E})T_{d} F J(nT_{d}) + \eta(nT_{d}) + S(nT_{d}) \exp j\omega_{0}nT_{d} + j\mathbf{E}_{S}(nT_{d}).$$

Будем рассматривать z_J как дискретную функцию $z_J \equiv z_J \ nT_H$ с интервалом, равным времени накопления $T_H = N_d T_d$.

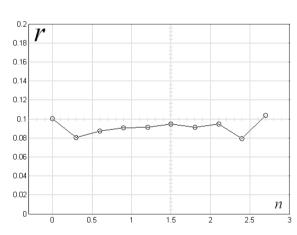
Алгоритм выбора коэффициентов фильтра

- 1. По выходному значению коррелятора $\mathbf{z}_J = \begin{bmatrix} z_J & iT_H \end{bmatrix}, i = 0...N_R 1$, вычисляется выборочная оценка корреляционной матрицы $\hat{\mathbf{R}}$ размерности N_R .
- 2. На основании полученной оценки корреляционной матрицы вычисляются собственные вектора \mathbf{q}_i , которые являются результатом *проекционного преобразования*.
- 3. Образуется вектор $Q_{\scriptscriptstyle S}$ длины $N_{\scriptscriptstyle R}$ путем конкатенации собственных векторов: $Q_{\scriptscriptstyle S} = \left\lceil \mathbf{q}_{\scriptscriptstyle 1}^T \colon \mathbf{q}_{\scriptscriptstyle 2}^T \colon \ldots \colon \mathbf{q}_{\scriptscriptstyle N_{\scriptscriptstyle R}}^T \right\rceil$.
- 4. Q_S аппроксимируется авторегрессионой (AP) моделью порядка N_{AR} . Параметрический метод спектрального анализа формирует оценку AP-параметров \mathbf{c}_i , $i=1...N_{AR}$, которая является признаком помехового сигнала.
 - 5. Классификатор идентифицирует помеховый сигнал по вычисленным признакам.
- 6. Из таблицы подставляются в адаптивный фильтр коэффициенты импульсной характеристики, соответствующие идентифицированной помехе.

Моделирование

В качестве примера РЭС со сложными сигналами рассмотрим навигационную спутниковую систему GPS. Адаптивный фильтр выберем на основе алгоритма наименьших квадратов порядка 10. Псевдослучайной последовательностью g nT_{PN} выбран комплиментарный код длиной 4095. Значения ω_{I} =0, α для помех (2) и (3) равно 20 кГц/с.

Размерность корреляционной матрицы $N_{\scriptscriptstyle R}$ =10. Алгоритмом параметрического спектрального анализа выбран модифицированный ковариационный алгоритм порядка AP-модели $N_{\scriptscriptstyle AR}$ =31.


На вход адаптивного фильтра подается смесь помехового сигнала с шумом, отношение помеха/шум равно $30~\mathrm{д}$ Б.

Свойство базиса собственных векторов. Базисы, образованные собственными векторами корреляционной матрицы для различных помеховых сигналов, являются слабо коррелированными. Коэффициент корреляции определяется как

$$r = \frac{\sum_{m} \sum_{n} Q_{m,n}^{BB} - \bar{Q}^{BB} \quad Q_{m,n}^{NB} - \bar{Q}^{NB}}{\sqrt{\left(\sum_{m} \sum_{n} Q_{m,n}^{BB} - \bar{Q}^{BB}\right)^{2} \left(\sum_{m} \sum_{n} Q_{m,n}^{NB} - \bar{Q}^{NB}\right)^{2}}},$$

где $Q_{m,n}^{BB}$ и $Q_{m,n}^{NB}$ — элементы матрицы собственных векторов широкополосной и узкополосной помехи соответственно, $\mathbf{Q}^L = \begin{bmatrix} \mathbf{q}_1 \ \mathbf{q}_2 \ \mathbf{q}_{N_R-1} \end{bmatrix}$ — базис, матрица собственных векторов помеховых сигналов (2) и (3), L = 1, 2; \bar{Q}^L — среднее значение матрицы \mathbf{Q}^L .

На рис. 2 представлена усредненная временная реализация коэффициента корреляции базиса собственных векторов для моделей помеховых сигналов (2) и (3).

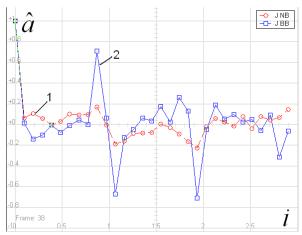


Рис. 2. Усредненная реализация коэффициента корреляции

Рис. 3. Оценки параметров АР-модели вектора $\mathbf{Q}_{\mathcal{S}}$: I — для узкополосной помехи; 2 — для широкополосной помехи

Из рис. 2 видно, что максимальное значение r не превышает 0,14 и базисы \mathbf{Q}^{NB} и \mathbf{Q}^{BB} слабо связаны [3].

На рис. 3 показаны признаки: оценки параметров AP-модели вектора $\mathbf{Q}_{\scriptscriptstyle S}$ для помеховых сигналов.

На рис. 4 показана зависимость дисперсии ошибки ε сигнала адаптивного фильтра при переключении помеховых сигналов.

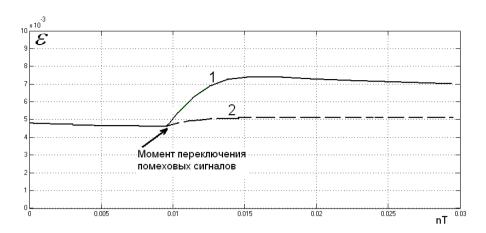


Рис. 4. Дисперсия ошибки фильтрации адаптивного фильтра: 1 — без выбора коэффициентов фильтра; 2 — с выбором коэффициентов фильтра

Из рис. 2 видно, что после переключения помехи с $J_{NB}(nT_{PN})$ на $J_{BB}(nT_{PN})$ обычный адаптивный фильтр переходит в режим адаптации к новой помехе. Подстановка в адаптивный фильтр весовых коэффициентов, соответствующих идентифицированной помехе, значительно снижает время адаптации.

Дополнительно на рис. 5 показана дисперсия ошибки сигнала при включении адаптивного фильтра.

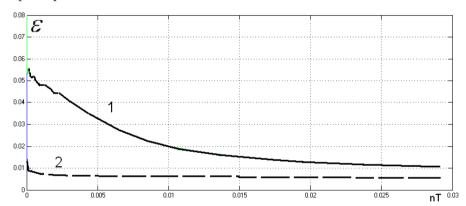


Рис. 5. Дисперсия ошибки сигнала при включении адаптивного фильтра: I — без выбора весовых коэффициентов; 2 — с выбором весовых коэффициентов

Из рис. 5 видно, что подстановка оптимальных весовых коэффициентов переводит адаптивный фильтр из режима обучения в режим фильтрации.

Заключение

Рассмотрен алгоритм выбора весовых коэффициентов адаптивного фильтра для защиты измерителей параметров сложных сигналов при воздействии помех с различной временной структурой. Свойство слабой коррелированности собственных векторов корреляционной матрицы помеховых сигналов может быть использовано обучаемым классификатором для обнаружения и идентификации помехи.

ADAPTIVE PROTECTION MEASURER OF COMPLEX SIGNALS FROM JAMMING ON THE BASIS OF ATTRIBUTES OF PROJECTIVE TRANSFORMATION

D.L. HODUKO, S.B. SALOMATIN

Abstract

The algorithm of work of the adaptive filter is considered at change of structure of a correlation matrix a jamming signal. The algorithm of a choice of optimum weight factors of the adaptive filter is offered on the basis of attributes and identification of a signal for decrease of time of adaptation. On an example watching measurer of parameters of signals of system of satellite navigation GPS the overall performance of algorithm of a choice of weight factors of the filter is shown.

Литература.

- 1. Уидроу Б., Стирнз С.Д. Адаптивная обработка сигналов. М., 1989.
- 2. *Ходыко Д.Л.*, *Саломатин С.Б.* // Докл. БГУИР. 2007. № 2
- 3. Мирский Г.Я. Характеристики стохастической взаимосвязи и их измерения. М., 1982.