Доклады БГУИР 2018, № 4 (114)

УДК 621.315.592

ТЕПЛОВОЕ РАСШИРЕНИЕ МОНОКРИСТАЛЛОВ (FeIn₂S₄)_{0.5}. (AgIn₅S₈)_{0.5}

Т.Г. БАРУГУ

Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь

Поступила в редакцию 6 декабря 2017

Аннотация. Направленной кристаллизацией расплава выращены монокристаллы (FeIn₂S₄)_{0,5}.(AgIn₅S₈)_{0,5}, определен их состав и структура. Установлено, что полученные монокристаллы кристаллизуются в кубической структуре шпинели. Методом наименьших квадратов рассчитан параметр элементарной ячейки. Дилатометрическим методом измерено тепловое расширение, определен коэффициент теплового расширения. Проведен расчет температуры Дебая и среднеквадратичных динамических смещений атомов для выращенных монокристаллов.

Ключевые слова: монокристаллы, кристаллическая структура, параметр элементарной ячейки, коэффициент теплового расширения, температура Дебая.

Abstract. $(FeIn_2S_4)_{0.5}$ (AgIn₅S₈)_{0.5} single crystals have been grown with method of directional crystallization. Their composition and structure were determined. It is seen that the pointed compounds and solid solutions are crystallized in the spinal cubic structure. The elementary cell parameters was calculated with the least square method. The thermal expansion was measured by a dilatometric method, the coefficient of thermal expansion was determined. Debye temperature and the mean square dynamic displacements of atoms for grown single crystals were calculated.

Keywords: single crystals, crystal structure, elementary cell parameter, thermal expansion coefficient, Debye temperature.

Doklady BGUIR. 2018, Vol. 114, No. 4, pp. 18-22 Thermal expansion of (FeIn₂S₄)_{0.5} (AgIn₅S₈)_{0.5} single crystals T.H. Barugu

Введение

Тройное соединение FeIn₂S₄ относится к магнитным полупроводникам типа $MB^{III}_{2}C^{VI}_{4}$ (M – Mn, Fe), B^{III} – Ga, In, Al; C^{VI} – S, Se). Указанное соединение кристаллизуется в кубической структуре (тип шпинели) и является перспективным материалом для создания на его основе различных функциональных устройств, управляемых магнитным полем [1–7].

Соединение AgIn₅S₈ относится к дефектным полупроводникам с концентрацией вакансий в катионной подрешетке ~ 25 %. Кристаллы указанного соединения перспективны для создания широкополосных фотопреобразователей естественного излучения, солнечных элементов, светодиодов линейно-поляризованного излучения, электрооптических модуляторов, и других устройств микро- и оптоэлектроники [8, 9].

В настоящей работе впервые представлены результаты исследования теплового расширения монокристаллов $(FeIn_2S_4)_{0,5} \cdot (AgIn_5S_8)_{0,5}$.

Методика эксперимента

Монокристаллы (FeIn₂S₄)_{0,5}.(AgIn₅S₈)_{0,5} выращивали направленной кристаллизацией расплава (вертикальный метод Бриджмена). Для выращивания использовали

поликристаллические слитки, синтезированные двухтемпературным методом. В этом методе ампулу помещают в двухзонную горизонтальную печь, температуру зон которой можно регулировать независимо друг от друга, а металлические компоненты и сера находятся в разных частях кварцевой ампулы. Предварительно ампулы проходили химико-термическую обработку (травление в плавиковой кислоте, затем в смеси HNO₃:HCl = 1:3, после чего их промывали в дистиллированной воде с последующим отжигом в вакууме при температуре 1270 К). Такая обработка ампул способствует устранению примесей, которые содержатся на поверхности кварцевой ампулы.

Элементарные компоненты (железо, серебро и индий) чистотой > 999,999 % загружали в кварцевую лодочку, которую располагали в одном конце кварцевой ампулы. В противоположном ее конце находилась сера, взятая с избытком от стехиометрии, необходимым для создания давления ее паров над расплавом ~ 2,0 атм. После откачки ампулы до остаточного давления ~10⁻³ Па ее отпаивали от вакуумной системы и располагали в горизонтальной двухзонной печи таким образом, чтобы лодочка с металлическими компонентами находилась в «горячей» зоне печи, где температуру устанавливали ~ 1390 К, сера – в «холодной» зоне, температуру которой повышали со скоростью ~ 100 К/ч до 680 К и выдерживали в течение 2 ч (для протекания реакции между металлическими компонентами и парами серы). Для более полного протекания этой реакции температуру «холодной» зоны с такой же скоростью повышали до 900 К с повторной выдержкой в течение 1 ч. По истечении указанного времени температуру «горячей» зоны понижали со скоростью 50 К/ч до 800 К и печь отключали от сети.

Полученные слитки измельчали и загружали в двойные кварцевые ампулы, из которых внутренняя ампула заканчивалась цилиндрическим капилляром, который обеспечивал формирование монокристаллической затравки. К наружной ампуле снизу приваривали кварцевый стержень, служивший держателем. После вакуумирования ампулы ее помещали в вертикальную однозонную печь с заданным температурным градиентом, в которой проводили выращивание монокристаллов. Температуру печи повышали до ~1390 К, и для гомогенизации расплава ампулу выдерживали при этой температуре 2 ч. После указанного времени выдержки проводили направленную кристаллизацию расплава, понижая температуру печи со скоростью ~ 2 К/ч до 1100 К. Для гомогенизации полученных слитков их отжигали при указанной температуре в течение 500 ч. Выращенные в таких условиях монокристаллы имели диаметр ~ 16 мм и длину ~ 45 мм, были однородными и гомогенными, что было установлено методами микрорентгеноспектрального и рентгеновского анализов.

Состав полученных монокристаллов определяли с помощью микрозондового рентгеноспектрального анализа, который проводили на установке «Cameca-SX100».

Структуру выращенных кристаллов определяли рентгеновским методом. Угловые положения линий дифракционного спектра записывали на рентгеновском дифрактометре ДРОН-3М в СиК_а-излучении с графитовым монохроматором. Образцы для измерений готовили путем измельчения кристаллов и последующей их запрессовкой в специальном держателе. Для снятия механических напряжений, возникающих при растирании монокристаллов, проводили их отжиг в вакууме при температуре 700 К в течении 2 ч.

Измерение теплового расширения проводили на кварцевом дилатометре в интервале температур 80-450 К на образцах со средними размерами $10 \times 4 \times 3$ мм³.

Результаты и их обсуждение

Результаты микрозондового рентгеноспектрального анализа показали, что содержание элементов в выращенных монокристаллах (Fe:Ag:In:S: = 4.88:4.92:33.12:57.08) согласуется с заданным составом в исходной шихте (Fe:Ag:In:S: = 4.76:4.76:33.34:57.14).

Дифрактограмма, углы отражения (2 θ), межплоскостные расстояния (*d*), относительные интенсивности рефлексов (*l*/*I*₀), индексы Миллера плоскостей (*hkl*) для (FeIn₂S₄)_{0,5}·(AgIn₅S₈)_{0,5} представлены на рис. 1 и в табл. 1.

Рис. 1. Дифрактограмма кристаллов (FeIn₂S₄)_{0,5}. (AgIn₅S₈)_{0,5}

Таблица 1. Результаты рентгеновского анализа кристаллов (FeIn₂S₄)_{0,5}. (AgIn₅S₈)_{0,5}

20 _{эксп.} , град	20 _{расч.} , град	$d_{ m эксп.}$, Å	d _{расч.} , Å	<i>I</i> / <i>I</i> ₀ , %	hkl
23,44	23,45	3,79	3,79	22	220
27,59	27,57	3,231	3,233	67	311
28,82	28,82	3,0951	3,0951	22	222
33,39	33,40	2,68120	2,6814	20	400
41,24	41,22	2,1867	2,1882	10	422
43,85	43,83	2,0624	2,0637	42	511
47,98	47,96	1,8945	1,8952	48	440
50,31	50,30	1,8121	1,8124	4	531
54,04	54,05	1,6960	1,6958	13	620
56,22	56,21	1,6348	1,6350	10	533
56,93	56,91	1,6161	1,6165	3	622
59,70	59,70	1,5475	1,5475	4	444
61,74	61,73	1,5012	1,5014	2	551
65,04	65,04	1,4328	1,4328	5	642
66,97	66,98	1,3961	1,3959	26	731
70,16	70,16	1,3402	1,3402	100	800
76,93	76,94	1,2383	1,2381	2	751
77,55	77,55	1,2299	1,2299	2	662
79,95	79,96	1,1989	1,1988	10	840
86,51	86,52	1,1241	1,1236	5	931
89,48	89,48	1,0943	1,0943	9	844
94,20	94,21	1,0515	1,0514	12	10,2,0,
95.99	95,99	1.0366	1.0366	5	773

Видно, что на указанной дифрактограмме присутствует система линий, характерная для кубической структуры (тип шпинели). Результаты измерений теплового расширения представлены на рис. 2.

Рис. 2. Температурная зависимость коэффициента теплового расширения (α_L) монокристаллов (FeIn₂S₄)_{0,5}. (AgIn₅S₈)_{0,5}

Анализ полученных результатов показывает, что коэффициент теплового расширения (α_L) для монокристаллов (FeIn₂S₄)_{0,5}.(AgIn₅S₈)_{0,5} мало изменяется в интервале температур 90–200 К (2,31–2,70)·10⁻⁶ К⁻¹, затем происходит резкий рост α_L вплоть до ~ 12·10⁻⁶ К⁻¹ (~ 390 К), после чего температура на величину α_L оказывает слабое влияние.

Полученные значения коэффициента теплового расширения были использованы для расчета характеристической температуры Дебая и среднеквадратичных динамических смещений атомов по следующим формулам:

$$\Theta_{\rm D}^{\alpha} = \frac{14,3}{\alpha_{\rm L}^{1/2} {\rm A}^{1/2} {\rm V}^{1/3}},$$
(1)
$$\sqrt{\overline{\rm u}^2} = \frac{4,3 \cdot 10^{-14} \left[\frac{{\rm D}(\Theta_{\rm D} \,/\,{\rm T}\,}{\Theta_{\rm D} \,/\,{\rm T}\,} + \frac{1}{4} \right]}{{\rm A}\Theta_{\rm D}},$$
(2)

где $\alpha_{\rm L}$ – коэффициент теплового расширения, ${\rm K}^{-1}$; $\Theta_{\rm D}^{\alpha}$ – температура Дебая; $\sqrt{\overline{\rm u}^2}$ – среднеквадратичные динамические смещения атомов; А – средняя атомная масса, г; *V* – средний атомный объем, см³; $D(\theta/T)$ – функция Дебая.

Данные расчетов величин θ^{α}_{D} и $\sqrt{\overline{u}^2}$ по формулам (1) и (2) представлены в табл. 2. Видно, что с ростом температуры значения температуры Дебая уменьшаются, а среднеквадратичные динамические смещения атомов увеличиваются. Такое поведение указанных указанных величин свидетельствует об ослаблении химической связи в монокристаллах (FeIn₂S₄)_{0,5}. (AgIn₅S₈)_{0,5}.

Таблица 2. Коэффициенты теплового расширения, температуры Дебая и среднеквадратичные динамические смещения атомов для (FeIn₂S₄)_{0.5}. (AgIn₅S₈)_{0.5}

<i>Т</i> , К	$\alpha_L \cdot 10^{-6}, K^{-1}$	Θ _D , K	$\sqrt{\overline{u}^{2}}$, Å	<i>Т</i> , К	$\alpha_L \cdot 10^{-6}$, K ⁻¹	Θ _D , K	$\sqrt{\overline{u}^{2}}$, Á
90	2,31	327	0,090	268	5,72	207	0,209
98	2,32	326	0,091	290	7,35	183	0,245
128	2,37	322	0,102	308	8,53	170	0,270
148	2,40	320	0,109	321	9,66	159	0,293
175	2,55	311	0,119	339	10,96	159	0,321
196	2,69	303	0,129	360	11,90	144	0,344
210	3,00	287	0,140	382	12,41	141	0,357
230	3,72	257	0,161	401	12,52	140	0,373
253	4,80	226	0,188	420	12,60	139	0,383

Заключение

Методом Бриджмена выращены монокристаллы (FeIn₂S₄)_{0,5}·(AgIn₅S₈)_{0,5}. Методом микрозондового рентгеноспектрального анализа определен состав выращенных монокристаллов, рентгеновским методом – кристаллическая структура. Установлено, что полученные монокристаллы кристаллизуются в кубической структуре шпинели. Дилатометрическим методом измерено тепловое расширение указанных монокристаллов и определен их коэффициент теплового расширения, рассчитаны температуры Дебая и среднеквадратичные динамические смещения атомов.

Список литературы

- 1. Electrical spin injection in a ferromagnetic semiconductor heterostructure / D.K. Young [et al.] // Nature. 1999. Vol. 402, № 6763. P. 790–797.
- 2. Нифтиев Н.Н., Тагиев О.Б., Рустамов А.Г. Оптические свойства монокристаллов MnGa₂S₄ // ФТП. 1990. Т. 24, № 4. С. 758–760.

- 3. Четверные твердые растворы (FeIn₂S₄)_{*x*}·(MnIn₂S₄)_{1-*x*} и фоточувствительные структуры на их основе / И.В. Боднарь [и др.] // ФТП. Т. 45, № 7. С. 941–946.
- 4. Determination of the dielectric function of MnIn₂S₄ single crystals by spectroscopic ellipsometry / M. Leon [et al.] // J. Phys. Chem. Solids. 2012. Vol. 73, № 6. P. 720–723.
- 5. Reil S., Haeuseler H. Materials with layered structures X¹: subsolidus phase diagram of the system FeIn₂S₄-FeIn₂Se₄ // J. Alloys Compounds. 1998. Vol. 270, № 1–2. P. 83–87.
- 6. Боднарь И.В. Ширина запрещенной зоны твердых растворов (FeIn₂S₄)_{1-x}·(In₂S₃)_x // ФТП. 2014. Т. 48, № 9. С. 1194–1197.
- 7. Optical and electrical properties of CuIn₅S₈ and AgIn₅S₈ single crystals / A. Usujima [et al.] // Jpn. J. Appl. Phys. 1981. Vol. 20, № 7. P. L505–L507.
- 8. Физические свойства монокристаллов твердых растворов Cu_xAg_{1-x}In₅S₈ и поверхностно-барьерных структур на их основе / И.В. Боднарь [и др.] // ФТП. 1998. Т. 32, № 9. С. 1043–1046.
- 9. Получение и исследование гетеропереходов AgIn₅S₈/(InSe, GaSe) / И.В. Боднарь [и др.] // ФТП. 1999. Т. 33, № 7. С. 805–809.

References

- 1. Electrical spin injection in a ferromagnetic semiconductor heterostructure / D.K. Young [et al.] // Nature. 1999. Vol. 402, № 6763. P. 790–797.
- Niftiev N.N., Tagiev O.B., Rustamov A.G. Opticheskie svojstva monokristallov MnGa₂S₄ // FTP. 1990. T. 24, № 4. S. 758–760. (in Russ.)
- Chetvernye tverdye rastvory (FeIn₂S₄)_x·(MnIn₂S₄)_{1-x} i fotochuvstvitel'nye struktury na ih osnove / I.V. Bodnar' [i dr.] // FTP. T. 45, № 7. S. 941–946. (in Russ.)
- 4. Determination of the dielectric function of MnIn2S4 single crystals by spectroscopic ellipsometry / M. Leon [et al.] // J. Phys. Chem. Solids. 2012. Vol. 73, № 6. P. 720–723.
- 5. Reil S., Haeuseler H. Materials with layered structures X1: subsolidus phase diagram of the system FeIn₂S₄-FeIn₂Se₄ // J. Alloys Compounds. 1998. Vol. 270, № 12. P. 83–87.
- Bodnar' I.V. Shirina zapreshhennoj zony tverdyh rastvorov (FeIn₂S₄)_{1-x}·(In₂S₃)_x // FTP. 2014. T. 48, № 9. S. 1194–1197. (in Russ.)
- 7. Optical and electrical properties of CuIn₅S₈ and AgIn₅S₈ single crystals / A. Usujima [et al.] // Jpn. J. Appl. Phys. 1981. Vol. 20, № 7. P. L505–L507.
- 8. Fizicheskie svojstva monokristallov tverdyh rastvorov Cu_xAg_{1-x}In₅S₈i poverhnostnobar'ernyh struktur na ih osnove / I.V. Bodnar' [i dr.] // FTP. 1998. T. 32, № 9. S. 1043–1046. (in Russ.)
- Poluchenie i issledovanie geteroperehodov AgIn₅S₈/(InSe, GaSe) / I.V. Bodnar' [i dr.] // FTP. 1999. T. 33, № 7. S. 805–809. (in Russ.)

Сведения об авторе

Баругу Т.Г., аспирант кафедры защиты информации Белорусского государственного университета информатики и радиоэлектроники.

Адрес для корреспонденции

220013, Республика Беларусь, г. Минск, ул. П. Бровки, 6, Белорусский государственный университет информатики и радиоэлектроники тел. +375-17-293-20-76; e-mail: chemzav@bsuir.by Баругу Тонбара Генри

Information about the author

Barugu T.G., PG student of information security department of Belarussian state university of informatics and radioelectronics.

Address for correspondence

220013, Republic of Belarus, Minsk, P. Brovki st., 6, Belarussian state university of informatics and radioelectronics tel. +375-17-293-20-76; e-mail: chemzav@bsuir.by Barugu Tonbara Henry