Технологические процессы и оборудование для сборки многокристальных модулей

ВЛАДИМИР ЛАНИН, ИГОРЬ ПЕТУХОВ

Многокристальные модули позволяют решить основные стратегические задачи в электронике – это миниатюризация, снижение энергопотребления, сокращение длины межсоединений, повышение скорости передачи сигналов, увеличение функциональности и степени интеграции, повышение производительности и снижение стоимости. Для серийного производства многокристальных модулей разработаны новые технологические процессы и оборудование.

ОСОБЕННОСТИ КОНСТРУКЦИЙ МНОГОКРИСТАЛЬНЫХ МОДУЛЕЙ

В современной электронике интенсивно ведутся работы по дальнейшей миниатюризации и интеграции выпускаемых изделий, особенно в секторе высокочастотных и СВЧ применений, связанных с бурным развитием телекоммуникационных технологий, аэрокосмической техники и приборостроения [1].

До настоящего времени еще широко используется технология установки кристаллов, бескорпусных транзисторов, диодов и пассивных элементов на поликоровые и ситаловые подложки с последующей герметизацией в металлостеклянный корпус (см. рис. 1а). Следующим шагом развития данной технологии стали объемные вертикальные конструкции типа «кристалл на кристалле» (см. рис. 1б). Такой подход позволяет достичь большей функциональности с уменьшением размера корпуса. Однако данным конструкциям, которые можно называть прототипами многокристальных модулей (МСМ) присущи недостатки, а именно: большое количество проволочных межсоединений, ограничение модулей по рабочей частоте и сложность обеспечения идеальной герметизации. Наличие большого числа проволочных перемычек на различных уровнях усложняет монтаж и не способствует повышению надежности изделия [2].

Новым направлением сборки многофункциональных модулей стало создание так называемых систем на кристалле (СнК), когда на одном кристалле выполняется аналоговая часть, вычислительная и цифровая периферия. Далее кристалл устанавливается в подходящий корпус. Недостатком данной системы является сложность проектирования и высокая трудоемкость изготовления кристаллов для подобных систем.

Технологии 2D и 3D MCM (см. рис. 2) позволяют создавать компактные изделия микроэлектроники (микропроцессоры, оперативные запоминающие устройства, разнообразные датчики и сенсоры и т. д.), при этом существенно сокращается количество межсоединений в изделии, и тем самым существенно повышается их надежность [3].

Новым подходом в повышении плотности упаковки современных микроэлектронных приборов является монтаж нескольких кристаллов на объединительную подложку на основе керамики или кремниевой пластины с последующей установкой подложки в корпус (см. рис. 3) с получением «системы в корпусе» (СвК). Помимо активных элементов на подложке возможен монтаж элементов поверхностного монтажа, а также 2-х или 3-х кристальных 2,5-3D конструкций, потенциальные преимущества которых заключаются в уменьшении размеров, сокращении длины межсоединений за счет замены длинных горизонтальных связей на короткие вертикальные [4]. Объединение этих компонентов в одном корпусе существенно снижает массогабаритные характеристики изделия и его стоимость. Сборка подобных модулей сопряжена с необходимостью использования следующего технологического оборудования:

Рис. 1. Сборка многокристальных модулей на объединительных подложках

WWW.ELCOMDESIGN.RU

Рис. 2. Структура 2D-3D конструкций МСМ модулей

Рис. 3. Многокристальный модуль на керамической подложке

- прецизионного нанесения припойных паст и адгезива для установки компонентов на керамическую подложку в 3D конструкциях;
- проволочного или ленточного монтажа;
- присоединения компонентов и структур по технологии Flip-Chip;
- пайки контактных соединений;
- герметизации корпуса.

Перспективность многокристальной сборки подтверждается наметившейся тенденцией к созданию на первом этапе освоения производства 2,5D-устройств, содержащих несколь-

Рис. 4. 4-х кристальная микросборка с кремниевой объединительной платой

ко кристаллов, объединяемых с помощью промежуточной монтажной пластины (см. рис. 4). На промежуточных кремниевых, керамических или стеклотекстолитовых пластинах могут быть установлены как пассивные компоненты (развязывающие конденсаторы, индуктивности), так и активные (бескорпусные стабилитроны, транзисторы).

Таким образом, появляется возможность при сравнительно небольших капиталовложениях начать производство достаточно широкой номенклатуры элементов в корпусах, обеспечивая рентабельность за счет большой разницы в стоимости между бескорпусными и корпусированными элементами с резким увеличением функционала изделий. Технологии системы в корпусе можно разделить на три основные группы [5]:

- Многокристальные модули с кристаллами, расположенными один на другом (SiP), и технологией межсоединений проволочными выводами с металлизацией керамической подложки.
- Многоэтажные корпуса (SoP) с выполнением межсоединений с помощью шариковых выводов или так называемых «бампов» по технологии Flip-Chip.
- Многокристальные модули с созданием межсоединений с помощью переходных металлизированных отверстий в материале полупроводниковых кристаллов и объединительных подложек, которые могут быть как многослойными керамическими подложками, так и кремниевыми подложками (TSV).

Рис. 5. Объемные выводы на контактных площадках многослойных структур

Создание межсоединений между многослойными структурами посредством объемных припойных шариковых выводов (см. рис. 5а) или столбиковых выводов (см. рис. 5б) является сложной технологической задачей настоящего времени. Диаметр оловянно-серебряных припойных шариков составляет всего 20 мкм, а высота столбиковых припойных выводов (основной состав – медь) составляет 80 мкм с диаметром цилиндрической части до 40 мкм.

Технологическая операция монтажа проволочных или ленточных межсоединений между активными и пассивными компонентами на подложке и внешними выводами корпуса изделия определяется следующими факторами:

- материалом токопроводящих покрытий и контактных площадок керамической или кремниевой подложки;
- размерами контактных площадок активных структур, расстоянием межу ними и разновысотностью их уровней по отношению к объединительной подложке;
- максимальной длиной проволочных межсоединений;
- возможным ограничением по нагреву изделия при термозвуковой сварке золотой проволоки, в основном из-за установленных элементов поверхностного монтажа на припойную пасту с температурой плавления меньше 200°С.

В настоящее время до 95% изготавливаемых микросхем в мире используют золотую проволоку для обеспечения надежных межсоединений между кристаллом и выводной рамкой, а также между кристаллами и пассивными элементами сложных конструкций МСМ. Чаще используется метод термозвуковой сварки «шарик-клин», при этом присоединение проволоки к контактной площадке кристалла производится либо оплавленным кончиком проволоки в шарик, либо торцом инструмента клинообразной формы.

Стабильность диаметра и симметрия соединений шариком встык на контактных площадках кристаллов определяется наличием встроенной системы контроля в устройстве формирования шарика на основе электроискрового метода оплавления проволоки, микропроцессорным управлением ультразвукового генератора и стабильностью параметров ультразвукового преобразователя. Разброс диаметров исходных шариков ±2,5 мкм (до сварки) с учетом погрешности позиционирования сварочной головки ±3 мкм на контактных площадках 50×50 мкм может привести к выходу сварного соединения за пределы контактной площадки и повреждению топологии кристалла. Необходимо учитывать, что разброс по деформации соединений шариком встык на кристалле сильно зависит от выбора геометрии рабочего торца капилляра, поэтому необходимо правильно выбирать капилляр с учетом возможных отклонений размеров рабочего торца.

Несмотря на преимущества метода термозвуковой сварки золотой проволоки, существенным ограничением его использования во многих случаях является необходимость использования нагрева зоны присоединения до 200–240 °C. Сборка MCM с элементами поверхностного монтажа, смонтированными на припойную пасту, будет ограничивать зону нагрева по крайней мере до температуры плавления припойной пасты (180–200 °C), хотя на практике температура зона сварки не должна превышать 140–180 °C. Применение ультразвуковых систем повышенной частоты в диапазоне 100–140 кГц позволяет снизить температуру зоны присоединения до 140–180 °C [6].

Альтернативным решением является ультразвуковая сварка алюминиевой проволокой методом «клин-клин», не требующая нагрева рабочей зоны. Дополнительные преимущества данного метода заключаются в относительно простом формировании достаточно длинных межсоединений (до 6–8 мм). Однако, при формировании проволочной перемычки при большой разновысотности первой и второй точек сварки в соединениях возможны микротрещины в месте перехода соединение–проволока, что при эксплуатации может привести к отказу соединения. Учитывая вышесказанное, при сборке MCM возможна последовательная комбинация применения термозвуковой и ультразвуковой микросварки.

Термозвуковая микросварка проволочных выводов в приборах с повышенной плотностью монтажа подразумевает в первую очередь уменьшенный размер контактных площадок на кристалле 60–80 мкм, малый шаг между соседними контактными площадками (до 40–50 мкм) и число выводов более 100. Приборы с размерами контактных площадок менее 60 мкм относятся к сверхплотному монтажу. При сборке подобных приборов необходимо использовать проволоку малого диаметра (≤ 25 мкм), а это в свою очередь, требует обеспечения надежного процесса присоединения в связи с уменьшением площади сварного соединения. Следующая проблема заключается в сложности формирования прямолинейных петель при достаточно большой длине.

Формирование прямолинейных выводов такой длины и проволокой уменьшенного диаметра является сложной задачей и требует не только точных интерполированных движений микроинструмента в системе координат ХҮΖ, но и проволоки с необходимыми упругими свойствами. Конструктивно выполнить ширину выводов корпуса менее 100 мкм очень сложно и нецелесообразно из-за невозможности обеспечить необходимую прочность соединения «встык» при его малой площади. Утоньшение торца капилляра резко снижает его прочность и ухудшает передачу ультразвуковой энергии. Возможным решением проблемы может быть многоуровневое расположение выводов корпуса и шахматное расположение контактных площадок на кристалле.

Известно, что при термозвуковой микросварке золотой проволоки к алюминиевым контактным площадкам кристалла

образуются интерметаллиды золота и алюминия, снижающие надежность соединений [7]. С уменьшением диаметра используемых проводников, а соответственно диаметров шариков, размер пустот значительно растет при термоциклировании в течение 192 часов при температуре 175 °С по сравнению с проволокой большего диаметра (≥ 25 мкм). В отдельных случаях рост пустот был настолько интенсивен, что приводил к полному отказу соединения.

Существует еще одна проблема, которая может снизить выход годных изделий – это следы пробников (зондов) на контактных площадках кристалла. При соотношении площади зондового отпечатка к площади сварного соединения более 20% растет число соединений с нулевой прочностью («отлипы») при тесте на отрыв.

Учитывая вышеизложенное, можно обозначить пути решения проблем проволочного монтажа МСМ повышенной плотности:

- при микросварке методом «шарик-клин» с малым шагом контактных площадок и применением проволоки малого диаметра ≤25 мкм необходимы конструкции приборов, обеспечивающих максимальную длину формируемых перемычек не более 4 мм, а также имеющих многоуровневое расположение выводов и шахматное расположение контактных площадок на кристалле;
- использование микроинструмента с утонением рабочего торца и надлежащим выбором геометрии для конкретного диаметра проволоки;
- применение прецизионных устройств формирования шарика, преимущественно отрицательной полярности, обеспечивающих воспроизводимый диаметр образуемых шариков;
- применение ультразвуковых генераторов повышенной частоты, обеспечивающих прецизионную регулировку подводимой энергии и поддержание ультразвуковой системы на резонансной частоте.

ТЕХНОЛОГИЯ FLIP-CHIP В 2,5D И 3D MCM

Технология Flip-Chip является на сегодняшний день основной при сборке MCM, таких как «система в корпусе» (SiP), «корпус в корпусе» (PoP), которые подразделяются на 2Dи 3D-системы. 2D-системы содержат несколько кристаллов на объединительной подложке с межсоединениями посредством проволочного монтажа. 2,5-D системы предполагают объемные конструкции, в том числе стековую установку кристаллов, а для обеспечения функциональности в корпус добавляются пассивные и другие необходимые компоненты.

Из рассматриваемого класса изделий намного сложнее 3D-структуры, поскольку секции компонентов или корпусов располагаются в вертикальной плоскости с обеспечением межсоединений посредством металлизированных сквозных отверстий. Выводами таких систем являются объемные припойные шариковые соединения, которые на контактных площадках кристаллов формируют либо гальваническим методом, либо устанавливают так называемые бампы, присоединяя оплавленный шарик на золотой проволоке к контактной площадке и отрывая проволоку от места перехода шарика в проволоку.

Процесс монтажа Flip-Chip заключается в присоединении полупроводникового кристалла интегральной схемы на подложку активной стороной с предварительно сформированными объемными выводами (бампами) на контактных площадках (см. рис. 6). В качестве объемных выводов кристалла могут быть металлические шарики или столбики металла (Au, Cu), припоя, выводы из проводящего полимера, а также металлические контактные площадки. Методы присоединения кристаллов по технологии Flip-Chip включают ультразвуковую и термозвуковую сварку, присоединение с помощью анизотропных или изотропных проводящих клеев, пайку оплавлением [8].

Основными преимуществами технологии сборки методом перевернутого кристалла являются возможность матричного расположения контактных площадок (по сравнению с контактными площадками, расположенными по краю кристалла) и очень малая протяженность межкомпонентных соединений, что сводит к минимуму величину их индуктивности.

Для оптимизации конструкции с технологией Flip-Chip необходимо свести к минимуму деформации сдвига в объеме припоя во время термоциклирования и обеспечить максимально возможную прочность соединения на поверхности раздела между кристаллом и подложкой. Прочность соединения поверхностей раздела кристалл–припой и подложка–припой на разрыв оптимизируется выбором такой контактной площади подложки, чтобы при испытаниях на термоциклирование и скручивание эти две поверхности раздела разрушались в равной степени. Это условие достигается выравниванием поверхностных напряжений.

Рис. 6. Технология присоединения кристаллов методом Flip-Chip

Таблица 1. Технические данные оборудования сборки МСМ

Технологические операции	Оборудование					
Автоматический зонловый контроль	ЭМ-6290		4090 μ, Electroglas			
Диаметр п/п пластины, мм	200		200			
Погрешность контактирования, мкм	5		5			
Устройство координатное: Привод XY, рабочее поле, мм	460×220		450×210			
Нагревательный предметный стол, диапазон температуры, °	50–150		50–130			
Привод Z (ход, мм)	10		10			
Привод F (ход, °)	10		5			
Наличие картографирования	да		да			
Цена, в долларах США	88000		160000			
Шлифование и утонение пластин	ЭМ-2060		MPS R700S, G&N			
Диаметр п/п пластины, мм	100, 150, 20	00	200			
производительность (удаляемый слой 100 мкм, без учета загрузки), шт. в час	45, 35, 15		60			
Шероховатость, Ra, мкм	0,1–0,05		0,14			
Количество шпинделей, шт.	2		1			
Остаточная толщина обрабатываемых пластин, мкм	100, 150, 20	00	100200			
Разнотолщинность пластины, не более, мкм	±3, ±4, ±	±3, ±4, ±5		±2		
Цена, в долларах США	116000		610000/650000			
Полуавтоматический монтаж пластин на рамку	ЭМ-2048		VWM-300, Main Features			
Максимальный диаметр обрабатываемой пластины, мм	300		300			
Производительность, пластин/ час для диаметра 200—300 мм	40		40			
Диапазон нагрева рабочей зоны, °C	40-80		40-80			
Погрешность поддержания температуры, °С	±4		±3			
Цена, в долларах США	38000			50000		
Полуавтоматический монтаж пластин на рамку	ЭМ-2085	ЭМ-2085A		DAD-3350, Disco		
Максимальный диаметр пластины, мм	200	200 2		200		
Диапазон рабочей подачи, мм/с	0,1–450	0,1–600		0,1–600		
Накопленная погрешность шаговых перемещений стола двухкоординатного, не более, мм	0,005/210	0,005/210		0,003/300		
Максимальная частота вращения вала электрошпинделя, мин ⁻¹	60000	60000		60000		
Мощность, кВт	1,2	1,2		1,8		
Цена, в долларах США	58000	54000		75000		
Полуавтоматическая дисковая резка подложек	ЭМ-225М		DAD321			
Максимальный диаметр	150		150			
Диапазон рабочей подачи, мм/с	0,5–125		0,1–300			
Накопленная погрешность шаговых перемещений стола двухкоординатного, не более, мм	0,020/160		0,005/160			
Максимальная частота вращения вала электрошпинделя, мин ⁻¹	60000		30000			
Мощность электрошпинделя, кВт	1,2		1,2			
Цена, в долларах США	30372-37585		55000			

Автоматическая						
дисковая резка	ЭМ-2065		DFL-7160, Disco			
Максимальныи диаметр пластины, мм	300		300			
Диапазон рабочей подачи, мм/с	0,1-450		0,1–600			
Накопленная погрешность шаговых перемещений стола двухкоординатного, не более, мм	0,005/310		0,003/310			
Максимальная частота вращения вала электрошпин- деля, мин ⁻¹	60000		60000			
Мощность электрошпинделя, кВт	1,2		1,2			
Цена, в долларах США	125000			210000		
Контроль и кассетирование кристаллов	ЭМ-4138		L	DS-6000, LAURIER (США)		
Производительность, кристаллов/час	6000			6000		
Максимальный диаметр обрабатываемых пластин, мм	200			200		
Размер кристаллов, мм	0×0,8 до 15	×15	1×1 до 15×15			
Цена, в долларах США	97000			153000		
Монтаж кристаллов на клей	ЭМ-4585	ЭМ-4	505	8032 Alphasem,		
Диаметр пластины, мм	300	до 3	00	300		
Производительность (кинематическая), кристаллов/	8000	800	0	9000		
Размер присоединяемых кристаллов, мм	0,8×0,8 до 20×20	0,25×0 до 20>),25 <20	0,25×0,25 до 20×20		
Погрешность монтажа, мкм	±25	±2	5	±25		
Время цикла монтажа, с	0,45	0,4	5	0,35		
Рабочее поле, мм	15×40	15×4	40	51×76		
Цена, в долларах США	149500	1240	00	210000		
Монтаж кристаллов ГИС	ЭМ-4025 A	M3	6496 K&S			
Производительность (кинематическая), кристаллов /час	2000		2500			
Размер присоединяемых кристаллов, мм	от 0,4×0,4 до 20×20 до 15×15			до 15×15		
Количество рабочих инструментов, шт	8 8			8		
Рабочее поле, мм	200×400			200×400		
Цена, в долларах США	44200	4200 63000				
Присоединение Au выводов ИС, БИС	ЭМ-4450	3088iP, ESEC		Maxµm plus, K&S		
Рабочее поле, мм	50×50	54×	54	52×70		
Время присоединения перемычки, сек	0,1–0125	0,1–0	,09	0,064		
Диаметр присоединяемых выводов, мкм	17,5–50	17,5–	50	17,5–75		
Погрешность присоединения выводов, мкм	±3	±3,5 ±2		±2,5		
Цена, в долларах США	85900	98000 130000		130000		
Присоединение AI выводов ИС, БИС, ГИС	ЭМ-4020ПМ		8060, K&S			
Рабочее поле, мм	100×50		64×64			
Время присоединения пере- мычки, сек	0,25		0,28			
Диаметр присоединяемых выводов, мкм	20–50		20–50			
Погрешность присоединения выводов, мкм	±4,5		±10			
Цена, в долларах США	85000		95000			

Таблица 1. Технические данные оборудования сборки МСМ (продолжение)

Монтаж кристаллов на припой, эвтектику и клей	ЭМ-4075A	ЭІ	M-4075K	720 West I	0, Bond	7316C, West Bond	
Способ монтажа	эвтект. пайка		клей	эвте пай	кт. ка	клей	
Максимальный размер обрабатываемого изделия, мм	50×60		50×60	50×	60	40×60	
Размеры присоединяемых кристаллов, мм	0,3×0,3 до 10×10	(Д	0,3×0,3 o 10×10	0,3× до 10	0,3 ×10	0,3×0,3 до 10×10	
Цена, в долларах США	13200		13800	240	00	26400	
Присоединение выводов	ЭM-4320		ЭМ-432	20-2	Э	M-4320-4	
Способ сварки	термозвук		ультра	ьтразвук		контактная сварка	
Материал присоединяемых выводов	Au		Al, Au		Au, Cu, PI, Pa		
Размер рабочего поля, мм	85		85		85		
Размеры присоединяемых круглых проводников, мм	0,017–0,07	0,017–0,07 (0,1–0,5)		0,07),5)	0,017–0,07		
Размеры присоединяемых плоских проводников, мм	0,02×0,03×0,1-	0,2	2 0,02×0,03×0,1–0,2		0,02×0,03×0,1–0,2		
Формообразование выводов	автоматич. автома		тич. автомат		втоматич.		
Цена, в долларах США	13190	13190 13260(12		2580)		13980	
Герметизация	УГ		PTX 10000, Cybernetix				
Производительность, шт/час	6000		6000				
Погрешность нанесенного слоя компаунда, мм:	±0,15			±0,1			
Отклонение от номинального расположения по корд. X,Y, мм	±0,15			±0,1			
Отклонение наружного диаметра, мм	±0,25			±0,25			
Минимальная высота слоя компаунда, мм	0,25		0,3				
Цена, в долларах США	105700		176000				
* Цена оборулования дана ориентировочная							

Столбики из эвтектического припоя на контактных площадках кристалла могут быть сформированы методами гальванопластики или трафаретной печати паяльной пасты. В первом методе необходимо нанесение жидкого флюса на кристалл погружением, распылением или дозированием. В первом случае флюс в виде пасты наносится на вращающийся диск, где его толщина примерно 50 мкм контролируется зазором между ракелем и диском. Кристалл с помощью манипулятора погружается во флюс и затем устанавливается на плату. Распылением наносят жидкие флюсы с содержанием растворителей до 95–98% и имеющие вязкость 7–30 сП. Клеящие свойства флюса должны быть достаточны для удержания кристалла при перемещении платы и пайке оплавлением.

Анализ технологических особенностей Flip-Chip полупроводниковых кристаллов показывает, что для автоматизированного группового процесса монтажа формирование объемных выводов может быть осуществлено методами гальванической металлизации, термического испарения в вакууме, ультразвуковой пайкой исходя из заданной плотности монтажа и требуемой точности совмещения при сборке. В условиях многономенклатурного и мелкосерийного производства предпочтение имеет метод монтажа термозвуковой сваркой, не требующий сложного и дорогостоящего оборудования и обладающий гибкостью для различных вариантов сборок.

ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ ДЛЯ СБОРКИ МСМ

Для обеспечения сборки МСМ необходимо оснащение производственных участков следующим оборудованием: прецизионной резки и разделения кристаллов; монтажа кристаллов; разварки проволочных выводов; термических процессов (полимеризация клея, пайка); герметизации или корпусирования.

Таблица 2. Технические данные установки модели FC-3000

Наименование	Значение
Метод сварки	Flip-Chip, термокомпрессия, термозвук
Соединяемые материалы и их сочетание при сварке	Стекло, FPC, керамика, кремний, GaAs
Размеры соединяемых структур, мм	до 80×250, толщина структур 0,2—1 мм
Количество одновременно соединяемых структур, шт	до 3
Голщина соединяемых кристаллов, мм	0,05–0,2
Циапазон регулирования температуры нагрева рабочей зоны столиков, °C	до 450
Время цикла, С/чип	1,7
Гочность совмещения по ХҮ, мм	±2
Время замены рабочей головки, не более, мин	15

Таблица 3. Технические данные установки мод. SB2 Jet

Наименование	Значение
Типоразмеры присоединяемых шариков под микровыводы, мм	Ø 0,04–0,76
Перемещение рабочего стола, мм, по координатам X, У По координате Z	320×320 50
Габариты, мм	1230×1200×1700
Масса, кг	800
Типы обрабатываемых изделий	п/п пластины, BGA, Flip-Chip
Материал припойных шариков	SnAgCu (217°C), AuSn (220°C), InSn (117°C)
Точность рабочего стола, не более, мм	0,005
Характеристики лазера: -длина волны, нм -энергия накачки лазера.Дж -частота импульсов. Ги	1064 8 ло 40
-длительность импульса, мс	1–20

Для дальнейшего оснащения производства с обеспечением формирования переходных металлизированных отверстий в кремниевых структурах потребуется дополнительное оборудование: глубокого плазменного (или реактивно-ионного) травления/лазерного сверления отверстий; заполнения (металлизации) отверстий; монтажа пластин и кристаллов; утонения пластин.

Для сборки изделий по технологии 2,5D-устройств к настоящему времени сформирован комплект технологического оборудования ОАО «Планар» и зарубежных фирм [9] (см. табл. 1).

Для перехода к освоению 3D конструкций необходимо дополнить представленное оборудование установками формирования припойных шариковых выводов и сварки полупроводниковых пластин. Для формирования объемных выводов используют в ряде случаев технологию присоединения золотого шарика на кончике золотой проволоки термозвуковой микросваркой методом «шарик-клин», производя обрыв проволоки после присоединения шарика. Данный способ установки объемных выводов является программной опцией современных установок присоединения золотой проволоки методом «шарик-клин» и является экономичным решением многих задач.

Лидером в производстве установок присоединения кристаллов является на сегодняшний день компания Karl Suss (США). Из последних моделей этой компании можно выделить серию FC-3000, специально предназначенную для сборки изделий типа «система в корпусе». Технические параметры установки приведены в таблице 2.

Из оборудования формирования припойных шариковых выводов можно выделить также установку лазерной пайки SB² Jet фирмы PacTech (см. рис. 7). Принцип работы установки

Рис. 7. Установка лазерного присоединения шариковых выводов SB2 Jet

заключается в следующем (см. рис. 8). Из бункера с припойными шариками механизмом подачи в рабочий инструмент подается шарик. Наличие шарика в инструменте контролируется датчиком давления защитного газа (азота), который подается в рабочий инструмент. Затем сфокусированным лучом импульсного лазера производится расплав припойного шарика в рабочем инструменте и выдавливание расплава избыточным давлением защитного газа на контактную площадку в среде защитного газа. Силы поверхностного натяжения придают припою форму шарика. Параметры установки приведены в таблице 3 Анализ технологий сборки МСМ показывает, что для автоматизированного группового процесса монтажа формирование объемных выводов в условиях многономенклатурного и мелкосерийного производства предпочтителен метод термозвуковой сварки, не требующий сложного и дорогостоящего оборудования и обладающий гибкостью для различных вариантов сборок. Для проволочного монтажа МСМ с высокой плотностью соединений рекомендуется применение оборудования ультразвуковой микросварки повышенной частоты и утоненной формы микроинструмента.

ЛИТЕРАТУРА

1. Белоус А. И., Солодуха В. А., Шведов С. В. Космическая электроника. М.: Техносфера, 2015.

2. Garron P. E., Turlik I. Multichip Module Technology. Handbook. N.Y.: McGraw-Hill, 1997.

3. Хохлун А., Бейль В. Некоторые особенности технологии производства современных многокристальных микросборок и «систем в корпусе» типа МКМ-К//Технологии в электронной промышленности. 2011. № 4.

4. Хохлун А. Некоторые тенденции развития мировой электроники. Перспектива для российской промышленности//Электроника. Наука. Технология. Бизнес. 2012. № 6.

5. Ваньков В., Комков Н. 3D модули на основе кремниевых коммутационных плат//Электроника. Наука. Технология. Бизнес. 2017. № 10 (00171).

6. Lanin V. L., Petuhov I. B. High frequency thermosonic wire bonding//Journal of Science and Engineering. 2014. Vol. 4 (2).

7. Ланин В. Л., Петухов И. Б. Получение соединений повышенной плотности термозвуковой микросваркой в 3D интегральных микросхемах//Технологии и конструирование в электронной annapamype. 2014. № 2–3.

7. Zhong Z., Goh K.S. Analysis and experiments of ball deformation for ultrafine pitch wire bonding//Journal of Electronics Manufacturing, 2001.Vol, 10, № 4.

8. Ли Н.-Ч. Технология пайки оплавлением, поиск и устранение дефектов: поверхностный монтаж, BGA, CSP и Flip–Chip технологии. М.: ИД «Технологии», 2006.

9. Технологии субмикронных структур микроэлектроники/Под ред. А. П. Достанко. – Минск: Беларуская навука. 2018.

Рис. 8. Схема лазерного присоединения шариковых припойных выводов