2010

ЭЛЕКТРОНИКА

УДК 621.371:550.837.6

ТРАНСФОРМАЦИЯ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКИ ИМПУЛЬСНОГО СИГНАЛА ОТРАЖЕННОГО ОТ АНИЗОТРОПНОГО ОБРАЗОВАНИЯ С ТВЕРДЫМ ДИЭЛЕКТРИЧЕСКИМ НАПОЛНИТЕЛЕМ

Д.В. ГОЛОЛОБОВ, И.А. КАЧАН, К.В. КУНАШКО

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 14 января 2010

Проведена оценка трансформации спектральных характеристик импульсных сигналов прямоугольной формы, отраженных от анизотропного образования с твердым диэлектрическим наполнителем.

Ключевые слова: анизотропная среда, импульсный сигнал, спектральная характеристика, угол падения и отражения.

Введение

Для решения задач поиска, обнаружения и контроля объектов с конечными электродинамическими параметрами, находящихся на фоне относительно однородной подстилающей среды широко используются импульсные методы. Особый интерес представляет задача обнаружения анизотропных неоднородностей (АН), проявляющих плазмоподобные свойства за счет специфических физико-химических процессов, связанных с ее формированием. Строгое теоретическое обоснование процесса взаимодействия импульсных сигналов (ИС) с такими неоднородностями практически отсутствует. Основы построения систем радиолокационного подповерхностного зондирования объектов с одноосной анизотропией приведены в работе [1]. Однако они не затрагивают вопросов, связанных с трансформацией спектральной характеристики отраженного сигнала, влияния параметров подстилающей среды на отдельные составляющие амплитудно-частотной (АЧХ) и фазочастотной характеристики (ФЧХ) сигнала.

Безусловным преимуществом импульсного сигнала является его высокая средняя мощность и широкополосность по сравнению с гармоническим колебанием.

Возможные искажения импульсов выражаются не только в трансформации его формы, но и наложении на нее колебания от активной АН. Например, в электромагнитной разведке полезных ископаемых по низкочастотной составляющей дополнительного поля, возникающего за счет естественных условий залегания объектов со специфическими электродинамическими параметрами, проводят оценку конкретной геологической неоднородности [2]. Согласно электродинамической модели, описанной в этой работе, объем редуцированных пород над залежью играет роль индуктивности, а нефть — роль диэлектрика, подошва и надзалежная кромка роль обкладок конденсатора. Таким образом, вся система является резонансной и генерирует колебания, определяемые геометрическими размерами конденсатора и глубиной залегания углеводородной залежи (УВЗ). В таком случае только за счет сепарации спектра сложного отраженного сигнала может быть достигнуто извлечение низкочастотного колебания из смеси импульсного и квазигармонического сигнала. При этом следует сформировать такой зондирующий сигнал, чтобы максимально разделить два колебания. Это существенно упрощает решение задачи фильтрации полезного (для приведенного примера — естественного излучения от УВЗ) сигнала и оценку трансформации первоначального сигнала, воздействующего на среду с потерями.

Задачи, связанные с оценкой поведения электромагнитного поля на однородноанизотропной границе, имеют сложности, определяемые физико-химическими особенностями возникающей анизотропии.

В работе рассмотрены результаты анализа трансформации спектральных характеристик отраженного ИС от среды с анизотропными свойствами плазмаподобного типа, имеющей плотный диэлектрический наполнитель.

Основная часть

Пусть электромагнитная волна (ЭМВ) с вертикальной поляризацией падает на поверхность, разделяющую два полупространства, характеризуемые своими электродинамическими параметрами: верхнее — ε_1 , μ_1 , σ_1 и нижнее, обладающее анизотропными свойствами — ξ_2 , μ_2 , σ_2 (рис. 1). Волна падает на границу радела под произвольным углом θ_n , отсчитываемым от внешней нормали, совпадающей с осью ОΖ. Отраженная ЭМВ характеризуется пространственными координатами, определяемыми углом отражения θ_0 . Плотность потока мощности падающей и отраженной волны определяется векторами Пойтинга Π_{Π} и Π_0 . Вектор поля подмагничивания H_{Γ} лежит в плоскости ХОZ и ориентирован перпендикулярно границе раздела двух сред.

Рис. 1. Падение ЭМВ на анизотропную среду

ИС имеет следующую амплитудно-временную параметрическую зависимость

$$s(t) = s(A, Q, \omega),$$

(1)

где *А* — амплитуда импульса; *Q*=*T*/т — скважность; ω=2*π*f — круговая частота.

В общем случае произвольное импульсное периодическое воздействие представляется рядом Фурье в комплексной форме

$$s(t) = \sum_{n=-\infty}^{\infty} c_n e^{j(n\omega_1 t - \varphi_n)}$$

с коэффициентами

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} s(t) e^{-jn\omega_1 t} dt = C_n(\omega) \exp(-j\varphi_n(\omega))$$
(2)

где *n* — номер гармоники; ω_1 — частота первой гармоники; $C_n(\omega)$, $\varphi_n(\omega)$ — амплитудный и фазовый спектры.

Если рассматривать непериодический ИС, то его частотные свойства характеризуется спектральной плотностью, определяемой прямым преобразованием Фурье:

$$S(j\omega) = \int_{-\infty}^{\infty} s(t)e^{-j\omega t}dt = S(\omega)\exp j\phi(\omega).$$
(3)

АН является многопараметрической, и обобщенная функция, описывающая ее физические свойства, характеризуется электродинамическими параметрами наполнителя ε_r , μ_r ; σ_r — диэлектрическая, магнитная проницаемости и проводимость; компонентами потока частиц N_i , v_i — концентрация частиц *i*-го сорта и частоты их столкновения; k_{μ} , k_m — коэффициенты соотношения концентраций и масс частиц:

$$\Psi = \Psi(\varepsilon_2, \xi_2, \mu_2, N_i, \nu_i, k_{\mu}, k_{m}, H_0, \omega).$$
(4)

При воздействии под произвольным углом θ_n на AH, имеющей заданный комплект электродинамических параметров, набора волн с электрической напряженностью поля $\vec{E} = E_m \exp j(n\omega_1 t - \vec{k}r)$ вертикальной поляризации, коэффициент отражения (коэффициент Френеля) определяется выражениям

$$\dot{R}_B = \frac{u_1 \cos \theta_{\Pi} + u_3 (\cos^2 \theta_{\Pi} - 1)}{u_2 \cos \theta_{\Pi} + u_3 (\cos^2 \theta_{\Pi} + 1)} = R_B \exp j\phi_B, \qquad (5)$$

где $u_{1,2} = \sqrt{\varepsilon_R \varepsilon_L} \pm 1$, $u_3 = \sqrt{\varepsilon_R} + \sqrt{\varepsilon_L}$, $u_4 = \varepsilon_R + \varepsilon_R \varepsilon_L + \varepsilon_L$, а ε_R и ε_L — комбинационные элементы (КЭТ) тензора диэлектрической проницаемости (ТДП) [2].

При этом появляется кроссполяризационная компонента

$$\dot{R}_{B\Gamma} = \frac{2(u_2 - 1)u_3 \cos \theta_{\Pi}}{u_2 \cos \theta_{\Pi} + u_3 (\cos^2 \theta_{\Pi} + 1)} = R_{\Gamma B} \exp j\phi_{\Gamma B}, \qquad (6)$$

обусловленная влиянием АН.

При известных коэффициентах отражения и амплитуде падающей волны несложно определить амплитудные значения гармонических составляющих отраженной волны, как

$$c_{n \operatorname{orp} i} = c_n R_i = C_n(\omega) R_i \exp j(\varphi_n + \phi_i(\omega)), \qquad (7)$$

здесь индекс і введен для разделения вертикальной (5) и кросполяризационной (6) компоненты.

Спектральная характеристика отраженной волны при воздействии непериодического ИС оценивается выражением

$$S_{\text{orp}\,i}(j\omega) = S(\omega)R_i(\omega)\exp j(\phi(\omega) + \phi_i) = S_{\text{orp}i}(\omega)\exp j\phi_{\text{orp}\,i}(\omega), \tag{8}$$

где $S_{\text{отрі}}(\omega)$ — АЧХ и $\phi_{\text{отрі}}(\omega)$ — ФЧХ отраженного сигнала.

Оценка трансформаций спектра отраженного ИС

Для оценки искажений АЧХ и ФЧХ отраженного сигнала введем несколько параметров позволяющих провести количественное сравнение спектральных характеристик падающей и отраженной ЭМВ (рис. 2):

- ширина нормированной АЧХ по уровню $0,707 - 2\Delta f_{0,7}$;

– уровень *N*-го лепестка АЧХ — S_P ;

- частота *М*-го нуля АЧХ — f_{0M} ;

– изменение фазы $\Delta \varphi(f) = [\varphi(f) + \varphi_i(f) - n2\pi].$

Выбор этих параметров обусловлен возможным сужением главного лепестка и изменением положения нулей АЧХ, которые однозначно связаны с существенной потерей энергии ИС, необходимостью оценки поведения неглавных лепестков спектра, особенно при проявлениях сторонних малоамплитудных колебаний. В случае, если известна частотная характеристика коэффициента Френеля, временные параметры ИС следует выбирать так, чтобы его спектральная характеристика подверглась максимальным искажениям.

Рис. 2. Оценочные параметры искажений: *а* — АЧХ; *б* — ФЧХ

Влияние электродинамических параметров магнитодиэлектрического наполнителя АН на АЧХ ИС

Проведем анализ трансформаций спектральной характеристики ИС прямоугольной формы с амплитудой 10 В, скважностью Q=50 и длительностью импульса $\tau=20$ нс при вариациях параметров компонентов потока частиц и наполнителя.

На рис. 3 представлены графики зависимости введенных оценочных параметров АЧХ при изменениях концентрации частиц $N=10^{15}-10^{19}$ м⁻³ для трех углов падения ЭМВ. Как видно, при малых концентрациях $N=10^{15}-10^{16}$ м⁻³ ширина спектра сужается. Причем, чем больше угол падения, тем больше изменяется ширина спектра (рис. 3,*a*). Боковые лепестки АЧХ растут с увеличением концентрации частиц (рис. 3,*b*). Если оценивать коридор спектральной плотности, соответствующий принятым граничным значениям концентраций, то оказывается, что он уменьшается с увеличением номера лепестка. Так для принятых параметров ИС эти коридоры соответствуют: $\Delta S_1=130$ мкВ/Гц, $\Delta S_2=90$ мкВ/Гц, $\Delta S_3=70$ мкВ/Гц. При увеличение уровня боковых лепестков, а при $\theta_{\Pi}>60^\circ$ параметр резко уменьшается.

Изменение частот столкновения частиц (учитываются наиболее энергоемкие столкновения между электронами и ион-электронные) оказывает противоположное воздействие на ширину главного лепестка АЧХ (рис. 4,*a*) — с ростом частоты столкновения электронов, когда коэффициент соотношения масс электрона и иона остается постоянным, происходит сужение ширины главного лепестка. Причем крутизна сужения ширины спектра $K(v)=\Delta F/\Delta v$ увеличивается с ростом частоты столкновений. Боковые лепестки АЧХ ИС резко уменьшаются с ростом частоты столкновений (рис. 4, δ). Увеличение угла наклона падающей ЭМВ приводит к большему уменьшению боковых лепестков.

Рассмотрим вопрос о влиянии параметров магнитодиэлектрического наполнителя на спектральную характеристику ИС. На рис. 5,*а* приведена зависимость ширины главного лепестка АЧХ от относительной диэлектрической проницаемости и углов падения ЭМВ. Как видно, при изменении диэлектрической проницаемости наполнителя в пределах 5–15 ширина главного лепестка не изменяется, а увеличение угла падения ЭМВ приводит к дискретному

уменьшению ширины этого лепестка. Уровень боковых лепестков АЧХ уменьшается с ростом диэлектрической проницаемости при углах падения ЭМВ θ_{Π} <60° (рис. 5, δ), а при θ_{Π} =80°, наоборот, возрастает (на рисунке показано стрелочкой).

Рис. 3. Влияние концентраций частиц на оценочные параметры: a — ширину главного лепестка; \overline{o} — уровень боковых лепестков для $\theta_{\Pi}=10^{\circ}$

Рис. 4. Влияние частот столкновения частиц на оценочные параметры: a — ширину главного лепестка; δ — уровень боковых лепестков для θ_{Π} =10°

Рис. 5. Влияние диэлектрической проницаемости наполнителя на оценочные параметры: *а* — ширину главного лепестка; *б* — уровень боковых лепестков

При изменении удельной проводимости наполнителя в пределах 0,1–0,0001 См/м ширина главного лепестка АЧХ возрастает при больших проводимостях (рис. 6,*a*). Уровень боковых лепестков изменяется незначительно. По мере возрастания номера лепестка и проводимости уровень боковых лепестков изменяется в пределах объема показанного на рис. 6,*6*.

Рис. 6. Влияние проводимости наполнителя на оценочные параметры: *а* — ширину главного лепестка; *б* — уровень боковых лепестков

Влияние электродинамических параметров магнитодиэлектрического наполнителя АН на ФЧХ ИС

Анализ трансформаций ФЧХ ИС при изменении компонентов потока частиц и электродинамических параметров наполнителя свидетельствует о существенном влиянии угла падения волны при изменениях концентраций и частот столкновения частиц.

На рис. 7,*а* приведена ФЧХ отраженного сигнала, характерная для изменений диэлектрической проницаемости и проводимости при вариациях углов наклона падающей ЭМВ. Эта же характеристика соответствует изменению концентраций частиц при $\theta_{\Pi}=10^{\circ}$. Когда $\theta_{\Pi}=60^{\circ}$, фазовая характеристика существенно изменяется (рис. 7, δ). Во-первых, ФЧХ становится квазилинейной, во-вторых, появляется инверсия фазы на 90° в первом нечетном лепестке при низких концентрациях частиц.

Одновременное изменение частот столкновений частиц и угла падения ЭМВ кардинально влияет на ФЧХ отраженного сигнала. Если при $\theta_{\Pi}=10^{\circ}$ наблюдается резкое изменение фазы в первом нечетном лепестке спектра (рис. 7,*в*), то при $\theta_{\Pi}=60^{\circ}$ скачки фазы проявляются в первом, втором и последующих лепестках (рис. 7,*г*).

Результаты и их обсуждение

В результате численных исследований процесса взаимодействия ИС и АН установлены закономерности трансформации спектральной характеристики отраженного сигнала при вариациях компонентов потока частиц и электродинамических параметров наполнителя. Для фиксированной скважности прямоугольных импульсов характерным является сужение главного лепестка спектра и увеличение его старших (боковых) лепестков. С ростом частоты столкновения частиц при постоянном коэффициенте соотношения масс электрона и иона также происходит сужение ширины главного лепестка, а боковые лепестки АЧХ резко уменьшаются. При изменении диэлектрической проницаемости наполнителя ширина главного лепестка не изменяется, а увеличение угла падения ЭМВ приводит к дискретному уменьшению ширины этого лепестка, уровень боковых лепестков АЧХ уменьшается с ростом диэлектрической проницаемости при изменении угла падения. Увеличение удельной проводимости наполнителя приводит к расширению главного лепестка АЧХ, а уровень боковых лепестков изменяется незначительно.

Рис. 7. Влияние концентрации (*a*, *б*) и частот столкновения (*в*, *г*) частиц на ФЧХ ИС при углах падения ЭМВ 10° (*a*, *в*) и 60° (*б*, *г*)

TRANSFORMATION OF SPECTRAL CHARACTERISTICS OF AN IMPULSE SIGNAL AT INFLUENCE ON ANISOTROPIC FORMATION WITH DIELECTRIC FILLING

D.V. GOLOLOBOV, I.A. KACHAN, K.V. KUNASHKO

Abstract

The estimation of transformation of spectral characteristics of impulse signals of the rectangular shape reflected from anisotropic formation with a solid magnetic-dielectric filling medium is investigated.

Литература

1. Финкельштейн М.И., Кутев В.А., Золаторев В.П. Применение радиолокационного подповерхностного зондирования в инженерной геологии. М., 1986.

2. Гололобов Д.В. Взаимодействие электромагнитных волн и углеводородных залежей. Минск, 2009.