2010

№ 3 (49)

УДК 621.372.8+519.6

КОМПЕНСАЦИЯ ОТРАЖЕНИЯ *H*₀₁-ВОЛНЫ ОТ ДИЭЛЕКТРИЧЕСКОГО ОКНА НА АПЕРТУРЕ РУПОРА

О.И. НАРАНОВИЧ, А.К. СИНИЦЫН

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 10 февраля 2010

С использованием разработанных ранее методов расчета симметричных *H*-волн в нерегулярном круглом волноводе с диэлектрическими вставками выполнены расчеты коэффициента отражения рупора с диэлектрическим окном на апертуре. Найдены условия, при которых за счет правильного выбора параметров рупора реализуется полная компенсация отражения.

Ключевые слова: рупор, диэлектрическое окно, коэффициент отражения, математическая модель.

Введение

Обычно из генератора большой мощности СВЧ-излучение выводят через рупор, основное назначение которого согласование волновода с открытым пространством, обеспечение минимального отражения при выводе энергии, а также реализация требуемой диаграммы направленности. Для изоляции вакуумного пространства мощного источника СВЧ на апертуре рупора помещается диэлектрическая диафрагма, наличие которой приводит к дополнительному рассогласованию, если ее толщина не подобрана соответствующим образом. Не всегда удается подобрать толщину диафрагмы имеющей диэлектрическую проницаемость є, соответствующую минимальному отражению СВЧ-волны заданной частоты. В этом случае актуальной является задача исследования возможности подбора таких параметров рупора, при которых реализовалась бы компенсация отражения от диафрагмы. Исследование физических особенностей такой компенсации является задачей данной статьи.

Постановка задачи

На рис. 1 представлена геометрия решаемой задачи. Входной радиус рупора b_0 , радиус апертуры b_L . На вход рупора подается симметричная H_{01} -волна мощности P_0^+ , на выходе ставится условие согласования ($P_L^- = 0$). Коэффициент отражения по мощности H_{01} -волны определяется соотношением $K = P_0^- / P_0^+ = 1 - P_L^+ / P_0^+$, где P_0^- , P_L^+ — отраженная и проходящая мощности. Образующая монотонного рупора на участке $z_1 < z < z_2$ задавалась в виде параболы, имеющей гладкое сопряжение с отрезками регулярных волноводов на входе ($0, z_1$) и апертуре (z_2, L)

$$b(z) = b_0 + (b_L - b_0)P_5[(z - z_1)/(z_2 - z_1)]; P_5[T] = T^3(10 - 15T + 6T^2); 0 \le T \le 1.$$
(1)

Параметры рупора $L_v = z_2 - z_1$ и b_L подбирались из условия минимального коэффициента отражения при наличии диэлектрического окна толщиной D_ε с диэлектрической проницаемостью ε .

Рис. 1. Рупор с диэлектрическим окном

Для выполнения расчетов была создана компьютерная программа, реализующая математическую модель и методы, разработанные ранее для подобных задач [1, 2]. Все геометрические размеры ниже приводятся в единицах $\lambda/2\pi$ (λ — длина волны СВЧ излучения в свободном пространстве).

Исследование отражения Н₀₁-волны от диафрагмы без рупора

Для выяснения особенностей отражения диэлектрической диафрагмы без рупора были выполнены расчеты зависимостей коэффициента отражения H_{01} симметричной волны в круглом регулярном волноводе радиуса *b* от диэлектрического окна толщиной D_{ε} (рис. 2).

Рис. 2. Зависимость коэффициента отражения от ширины диэлектрического окна $1 - b = 4; 2 - b = 6; 3 - b = 8; 4 - b = 12: a - \epsilon = 2,5; \delta - \epsilon = 5$

Анализ полученных результатов показал, что с увеличением от нуля толщины диэлектрического окна D_{ε} коэффициент отражения K вначале возрастает до определенного максимального значения, затем проходит нулевой минимум при $D_{\varepsilon}^{1}(b,\varepsilon)$, и при дальнейшем увеличении зависимость $K(D_{\varepsilon})$ повторяется. Максимум K приходится на $D_{\varepsilon}^{0,5} = 0,5D_{\varepsilon}^{1}$. С уменьшением ε толщина диэлектрического окна $D_{\varepsilon}^{1}(b,\varepsilon)$, соответствующего отсутствию отражения, возрастает, при увеличении b — уменьшается в соответствии с формулой для половины длины волны в волноводе, заполненном диэлектриком

$$D_{\varepsilon}^{1}(b,\varepsilon) \Box 0,5\Lambda_{\varepsilon}^{H_{01}} = \pi/\sqrt{W^{2}\varepsilon - \mu_{0i}/b^{2}}.$$
(2)

Следует особо отметить тот факт, что максимальное отражение от диафрагмы может достигать 90% даже при небольших значениях $\varepsilon \approx 2,5$. Хотя при увеличении радиуса волновода значение максимального отражения и уменьшается, однако остается все еще значительным. Например, для $\varepsilon = 2,5$ и при радиусе *b*≥8 максимум отражения $K_{max} = 20\%$, для $\varepsilon = 5$, $K_{max} = 40\%$.

Расчеты показали, что прохождение H_{01} -волны через диэлектрическое окно в регулярном волноводе не сопровождается возбуждением высших парциальных волн H_{0i} *i*>1, амплитуды которых $A_i(z)$, находились по формуле

$$A_{i}(z) = \frac{1}{h_{0i}} \int_{0}^{1} u z, \rho J_{1} \mu_{0i} \rho d\rho; \quad h_{0i} = \int_{0}^{1} J_{1}^{2} \mu_{0i} \rho \rho d\rho.$$
(3)

Здесь $\rho = r/b(z)$, μ_{0i} — корни функции Бесселя $J_1 x$, $u(z, \rho)$ — рассчитываемое по методу сеток волновое поле [2]. Компонента E_{ϕ} симметричной *H*-волны нерегулярного волновода в этом случае представляется в виде $E_{\phi} r, z = \frac{1}{b z} \sum_{i} A_i z J_1 \left(\mu_{0i} \frac{r}{b z} \right)$.

Характерное распределение амплитуды $A_1(z) H_{01}$ -волны в регулярном волноводе радиуса b=8 при прохождении ее через диэлектрическую диафрагму, расположенную между пунктирными линиями, для толщины D_{ε}^1 , соответствующей отсутствию отражения и для толщины $D_{\varepsilon}^{0.5}$, соответствующей максимуму отражения, представлено на рис. 3. При наличии отражения перед диафрагмой на графике амплитуды видны характерные для суперпозиции прямой и обратной волн биения. После диафрагмы амплитуда проходящей волны постоянна, что соответствует полному согласованию.

Рис. 3. Прохождение волны через диэлектрическое окно в регулярном волноводе при *b*=8; ε=5: *a* — *D*_ε=1,4; *K*=0,007; *б* — *D*_ε=0,7; *K*=0,52

Компенсация отражения Н₀₁-волны в монотонном рупоре

Для типичного монотонного рупора без диэлектрического окна с входным радиусом $b_0=5$ было установлено, что при $b_L = 9 \div 10$ и $L_v = 10 \div 15$ коэффициент отражения K не превосходит 0,003. При фиксированном $b_{L0} = 10$ и увеличении $L_v \ge 10$ коэффициент отражения колеблется в диапазоне $K = 0,0023 \div 0,003$, причем первый минимум K=0,0023 достигается при $L_v=12,4$. Из рис. 4 видно, что на выходе рупора величина амплитуд высших парциальных волн H_{02} , H_{03} при этом составляет $\approx 85\%$ и 15% от амплитуды основной H_{01} -волны.

Расчеты показали, что при помещении "прозрачной" для H_{01} -волны диафрагмы в раскрыве рупора (с толщиной $D_{\varepsilon} \square D_{\varepsilon}^{1}$) происходит небольшое, примерно в два раза увеличение коэффициента отражения K, объясняемое отражением от диафрагмы возбуждаемых в рупоре волн с более высоким индексом. При оптимизации параметров b_L , L_{ν} удается уменьшить коэффициент отражения до значений соответствующих рупору без диэлектрического окна.

На рис. 5 представлено характерное распределение амплитуд $A_i(z)$ в рупоре при наличии диэлектрического "прозрачного" окна до и после оптимизации.

При наличии отражения перед диафрагмой на амплитудных кривых видны характерные для суперпозиции прямой и обратной волн биения. После диафрагмы амплитуды проходящей волны постоянны, что соответствует полному согласованию.

Естественно, что при помещении в раскрыв рупора "отражающей" диафрагмы $(D_{\varepsilon} \neq D_{\varepsilon}^{1})$ коэффициент отражения рупора будет соответствовать коэффициенту отражения от такой диафрагмы. Расчеты показали, что компенсировать отражение от диэлектрического окна

можно за счет соответствующего выбора параметров b_L , L_v рупора, обеспечивающих минимум коэффициента отражения K.

Рис. 4. Амплитуды A_i волн H_{0i} в рупоре без диэлектрического окна b₀=5; b_L=10; L_v=12,4; K=0,0023

Рис. 5. Рупор с "прозрачным" окном: до оптимизации: $a - b_L = 10$; $L_v = 12,4$; K = 0,0051; после: $\delta - b_L = 9,2$, $L_v = 10,3$; K = 0,0023; $b_0 = 5$; $D_{\varepsilon} = 2, \varepsilon = 2,5$; I - 4 — амплитуды волн, соответственно $H_{01} \dots H_{04}$

На рис. 6 представлено распределение амплитуд в рупоре с "отражающей" диафрагмой ($D_{\rm s} \Box D_{\rm s}^{0,5}$) до и после оптимизации.

Рис. 6. Рупор с "отражающим" окном: до оптимизации: $a - b_L = 10$; $L_v = 12,4$; K = 0,14; после: $\delta - b_L = 12,04$; $L_v = 11,09$; K = 0,0023; $b_0 = 5$; $D_{\varepsilon} = 1, \varepsilon = 2,5$; l - 4 — амплитуды волн $H_{01} \dots H_{04}$

Коэффициент отражения волны H_{01} от такой диафрагмы в регулярном волноводе равен 0,22 (рис. 2). Коэффициент отражения рупора с такой диафрагмой несколько ниже и равен 0,14. Как видно из рис. 6,*a*, основное отражение испытывает в этом случае H_{01} -волна. В результате оптимизации параметров коэффициент отражения оказывается не большим, чем у рупора без диафрагмы. Как видно из рис. 6,*б*, в рупоре с такими параметрами происходит переотражение волн между диафрагмой и нерегулярным участком волновода. В результате система "рупор-диафрагма" представляет полуволновой трансформатор, через который волна проходит без отражения.

Компенсация отражения волны в немонотонном рупоре с диэлектрической диафрагмой при минимизации амплитуд высших мод на апертуре

Как показано в [1], для рупора симметричных *E*-волн удается подобрать такой немонотонный профиль, при котором на апертуре отсутствуют высшие моды, что значительно улучшает его коэффициент направленного действия. Выполненные нами расчеты показали, что и в рупоре симметричных *H*-волн также возможно подобрать немонотонный профиль, при котором достигается отсутствие высших мод на апертуре.

Профиль немонотонного рупора зададим в виде

$$b(z) = b_0 + (b_L - b_0)P_5[T] + D_v[T]; \ T = (z - z_1)/(z_2 - z_1).$$
(4)

Здесь функция $D_{\nu}[T]$ определяет отклонение профиля от монотонного и задается в виде разложения $D_{\nu}(T) = \sum_{k=1}^{K} d_k \varphi_3[T(K+3) - k - 1]$ по сдвигам стандартной финитной функции

 $\phi_3(x)$, представляющей *B*-сплайн Шенберга третьей степени:

$$\varphi_{3}(x) = \begin{cases} 0, & |x| \ge 2; \ (2-x)^{3}/6, \ 1 \le x \le 2; \\ \left[1+3(1-x)+3(1-x)^{2}-3(1-x)^{3}\right]/6, \ 0 \le x \le 1; \\ \varphi_{3}(-x), & x \le 0. \end{cases}$$
(5).

Такое представление обеспечивает гладкое сопряжение (непрерывность первой и второй производных) с регулярными отрезками волноводов на входе и апертуре рупора. Параметры профиля рупора L_v , b_L , $d_1...d_5$ подбирались из условия минимума коэффициента отражения при минимуме амплитуд высших мод на апертуре. Для решения этой двухкритериальной задачи была выбрана целевая функция с весовым коэффициентом k_{0pt} в виде

$$F_{c} = k_{0pt}K + (1 - k_{0pt})\frac{\sum_{i=2...m} |A_{i}(L)|}{|A_{1}(L)|}.$$
(6)

Вначале был найден профиль рупора без диэлектрического окна, обеспечивающий отсутствие высших мод на апертуре при коэффициенте отражения K=0,0023. Параметры и форма найденного рупора представлены на рис. 7,*a*. Длина L_v и раскрыв b_L рупора такие же, как у монотонного (рис. 4). Подавление высших мод на апертуре обеспечивается двумя периодами гофрировки профиля.

Рис. 7. Немонотонный рупор с "прозрачным" диэлектрическим окном: до оптимизации: $a - d_1 \dots 2,35$; 1,23; -0,30; 0,83; -0,55; b_L =10; L_ν =12,4; K=0,0033, после: $\delta - d_1 \dots d_5$ =2,54; 1,45; -0,37; 0,54; -0,31; b_L =9,90; L_ν =12,38; K=0,0026; b_0 =5; D_{ϵ} =2; ϵ =2,5; I-4 — амплитуды волн $H_{01} \dots H_{04}$

При помещении "прозрачного" диэлектрического окна в такой рупор его коэффициент отражения незначительно возрастает до K=0,0033, увеличиваются также амплитуды высших мод (рис. 7,a). При небольшой коррекции параметров профиля удается компенсировать рассогласование, вносимое такой диафрагмой. Из рис. 7,6 видно, что за счет увеличения первой и уменьшения второй волн гофрировки профиля на апертуре практически отсутствуют высшие моды.

Помещение "отражающей" диафрагмы в рупор с немонотонным профилем, обеспечивающим подавление высших мод на апертуре, не приводит к увеличению амплитуд высших мод на апертуре, однако при этом коэффициент отражения рупора практически равен коэффициенту отражения диафрагмы K=0,2. Из рис. 8,*а* видно, что значительное отражение испытывает лишь основная волна, распределение высших мод остается таким же, как в рупоре без диафрагмы.

Рис. 8. Преобразование волн в немонотонном рупоре с диэлектриком: до оптимизации: $a - a_1 \dots a_5 = 2,35; 1,23; -0,30; 0,83; -0,55; b_L = 10; L_v = 12,4; K = 0,2;$ после: $\delta - a_1 \dots a_5 = 7,92;$ $-2,93; -0,22; -1,65; -2,44; b_L = 10,67, L_v = 15,3; K = 0,0023; b_0 = 5; D_{\epsilon} = 1; \epsilon = 2,5; I - 4$ — амплитуды волн $H_{01} \dots H_{04}$

Как показали многочисленные расчеты, для компенсации влияния "отражающей" диафрагмы в немонотонном рупоре необходимо введение значительной неоднородности профиля (рис. 8,*б*). Фактически первый гофр профиля рупора переходит в отражающую канавку, образующую с остальной частью рупора полуволновой трансформатор [3, 4].

Заключение

Представленные результаты указывают на то, что наличие диэлектрического окна в рупоре симметричных *H*-волн может приводить к значительному рассогласованию, причем коэффициент отражения может достигать 20–60% для ε =2–10, если толщина окна не соответствует условию "прозрачности". Однако при этом можно подобрать параметры монотонного рупора таким образом, что за счет переотражений волн в системе рупор–диафрагма коэффициент отражения рупора с диафрагмой останется таким же, как и в рупоре без диафрагмы.

За счет использования немонотонного гофрированного профиля можно обеспечить отсутствие высших мод в раскрыве рупора. Введение "прозрачного" окна практически не изменяет свойств такого рупора. Однако компенсация влияния "отражающего" диэлектрического окна в таком рупоре возможна лишь за счет значительной неоднородности профиля, либо за счет введения рефлектора [2].

COMPENSATION OF WAVE H_{01} REFLECTION FROM A DIELECTRIC WINDOW ON TO THE HORN APERTURE

O.I. NARANOVICH, A.K. SINITSYN

Abstract

With use developed before methods and the program of calculation symmetric H waves in an irregular round wave guide with dielectric inserts [3] calculations of factor of reflection of a horn with a dielectric window on the aperture are executed. Conditions at which at the expense of a correct choice of parametres of a horn full indemnification of reflection is realised are found.

Литература

1. Батура М.П., Кураев А.А, Синицын А.К. Основы теории, расчета и оптимизации современных электронных приборов СВЧ. Минск, 2007.

2. Наранович О.И., Синицын А.К. // Зарубежная радиоэлектроника. Успехи современной радиоэлектроники. 2007. № 10. С. 57–63.

3. Кураев А.А., Наранович О.И., Синицын А.К. // Докл. БГУИР. № 6 (44) 2009. С. 5–10.

4. Naranovich O.I., Sinitsyn A.K. // IVEC 2009. Rome, Italy. April 28-30, 2009. P. 1.7.