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In the frameworks of scalar-tensor gravitational theory the Lagrangian of scalar field whose
source is a trace of the total energy-momentum tensor of matter and scalar field is founded.
At appointed choice of scalar potential, parameters of such a scalar field can simulate a dark
matter in accordance with observational data.

PACS numbers: 04.30.Db; 02.30.Gp
Keywords: Minkowski space-time, gravitational tensor field, scalar field, stress-energy tensor, cos-
mological scenario

1. Introduction

As is known today, we live in the universe
where there is an abundance of dark matter and
dark energy and the acceleration of cosmological
expansion is observed [1], [2]. One of the possible
approach to theoretical description of these ob-
servations is the modification of General Relativ-
ity. In this connection the interest in Brans-Dicke
scalar theories is resumed [3]. In such approach
gravitational field is depended on the metric and
scalar potential.

Scalar fields are commonly used as candi-
dates for the dark energy [4, 5]. Nevertheless,
there is no unambiguous criterion for the choice of
the field Lagrangian in scalar field theories. More-
over, as it was shown in [6], any scalar field in the
slow-roll regime can model the cosmological con-
stant and hence leads to an appropriate cosmo-
logical scenario.

There is an alternative approach to the
problem of scalar field Lagrangian determination,
which was first realized in the Relativistic The-
ory of Gravity (RTG) [7]. As it was shown, the

Einstein equations of the gravitational field can
be derived if one considers a tensor field with the
source being the total stress-energy tensor of both
field and matter. This theory can be regarded as
a gauge theory of the group of Lie variations for
dynamical variables. The related transformations
are variations of the form of the function for gen-
erally covariant transformations. The requirement
on action to be invariant for this group under the
transformations of the dynamic variables alone
requires replacing the ”nondynamic” Minkowski
metric γik with expression gik: g̃ik =

√−ggik =√−γ(γik +
√

kψik), where γ = detγik, g = detgik,
k is the Einstein constant, and thus introducing
the gauge gravitational potential ψik. The expres-
sion gik is interpreted here as the metric of the
effective space-time from which the connection,
the Cristoffel bracket, can be uniquely construct-
ed. The RTG field equations in its massless vari-
ant are the Einstein ones for this effective metric,
added the conditions, restricting the spin states
of the field ψik: Dig̃

ik = 0 , where Di is the co-
variant derivative in Minkowsky space. This con-
ditions play a significant role in RTG, removing
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gauge arbitrariness of Einstein equations and they
coincide with the Fock harmonical conditions in
Galilean coordinates.

Although RTG field equations coincide with
General Relativity ones locally, its global solu-
tions, generally speaking, will be different, since
this solutions are defined on the various mani-
folds. RTG, founding on the simple space-time
topology, allows to introduce the global Galilean
coordinate system, that distinguishes RTG from
the bimetric theories, in which a flat space plays
an auxiliary role and its topology does not de-
fine the character of the physical processes. This
distinction may take place at interpretation of
the field solutions, since the coordinate system in
RTG is defined by the Minkowsky metric, but it
is fixed by noncovariant coordinate conditions in
GR. In the present work we consider a scalar field
with a similar property: we require the scalar field
source to be the trace of the stress-energy tensor
of both matter and the field itself, at that both
the scalar field lagrangian and the cosmological
scenario can be obtained in general relativity as
well.

2. Scalar field equations

Consider a scalar field ϕ with the source be-
ing the total trace of the stress-energy tensor of
the scalar field and matter fields. This condition
implies that the scalar field equation has the fol-
lowing form:

(¤−m2)ϕ = k(Tϕ + TM ), (1)

where the d’Alembertian is defined as ¤ =
−∇i∇i, the constants m and k have the physical
meaning of the mass and the interaction constant
of the scalar field respectively (here Latin indices
run from 0 to 3, the metric signature (+,−,−,−)
is used, the speed of light is assumed to be c = 1).

Equation (1) allows to determine the La-
grangian of the field. For this purpose, one writes
the Lagrangian of matter and the scalar field in

the most general form:

L = F (ϕ, u)
√−g + LM (ϕ, gik,ΨM ), u =

1
2
ϕ,iϕ

,i,

(2)
where F is some function, ΨM denotes the set
of matter fields. The traces of the stress-energy
tensors of matter and the scalar field are given by
the following expressions:

Tϕ = 2u
∂F

∂u
− 4F, TM =

2√−g
gik δLM

δgik
. (3)

With the help of expressions (3) field equation (1)
takes the form

(¤−m2)ϕ = k(2u
∂F

∂u
−4F +

2√−g
gik δLM

δgik
). (4)

The equation is obtained by variation of field
Lagrangian (2) can be written as follows:

∂F

∂ϕ
− 2u

∂2F

∂u∂ϕ
− ∂2F

∂u2
ϕ;iϕ;kϕ;i;k

− ∂F

∂u
ϕ;i

;i +
1√−g

δLM

δϕ
= 0.

(5)

The condition that equations (4) and (5) are coin-
cided leads to restrictions both on the scalar field
Lagrangian and the nature of interaction between
the scalar field and matter. Specifically, F (ϕ, u)
must be linear in u:

F (ϕ, u) = A(ϕ)u + B(ϕ), (6)

where A and B satisfy the system of equations

A′ = −2kA2, B′ = −m2ϕA + 4kAB. (7)

In solving system (7) we require that A(0) = 1.
This condition guaranteers the ordinary dynamic
part of the field lagrangian 1/2ϕ,iϕ

,i for ϕ → 0.
The solution of the system (7) has the form

A =
1

1 + 2kϕ
,B = −1

2
m2ϕ2−1

2
C(1+2kϕ)2, (8)

where C is a constant.
The interaction between scalar field and

matter must satisfy the following condition:

δLM

δϕ
= − 2k

1 + 2kϕ
gik δLM

δgik
. (9)

Нелинейные явления в сложных системах Т. 15, № 2, 2012



Scalar–Tensor Gravitation 193

For this condition hold for an arbitrary type
of matter it is sufficient to require that the metric
and the scalar field occur in matter Lagrangian
only in combination

fik = (1 + 2kϕ)gik. (10)

With the help of the above mentioned con-
ditions, lagrangian reduces to

L =
1
2

(
ϕ,iϕ

,i

1 + 2kϕ
−m2ϕ2 − C(1 + 2kϕ)2

)√−g

+ LM

(
1

1 + 2kϕ
gik, ΨM

)
. (11)

We write the field equations (1) explicitly:

ϕ;i
;i + m2ϕ = −k(− ϕ,iϕ

,i

1 + 2kϕ

+ 2m2ϕ2 + 2C(1 + 2kϕ)2 + TM ). (12)

We note that Lagrangian (11) coincides (for
C = 0) with the one obtained in [8] for the scalar
field with the source being the total trace of its
stress-energy tensor. The approach of the present
work differs form [8] in including the interaction
between the scalar field and matter. In addition,
the results of the present work are more general
since in [8] the linear in u Lagrangian of the form
(6) is initially assumed and the condition B(0) =
0 is used, which leads to C = 0.

Consider the scalar field in the state with the
minimum energy. The minimum of the energy is
achieved at the points where the potential

V (ϕ) =
1
2
m2ϕ2 +

C

2
(1 + 2kϕ)2 (13)

has minimum. Here ϕ is assumed to vary from
−1/2k to +∞, which ensures the positivity of the
denominator in Lagrangian (11). Under the condi-
tion C > −m2/4k2, the potential has a minimum
at the point

ϕ0 = − 2kC

m2 + 4k2C
, V (ϕ0) =

m2C

2(m2 + 4k2C)
.

(14)
For C > 0 the minimum value of the po-

tential is positive: V (ϕ0) > 0, therefore it can

be identified with the cosmological constant in
the Einstein equations. For 0 > C > −m2/4k2

the minimum value of the potential is negative:
V (ϕ0) < 0. In this case |V (ϕ0)| can be interpret-
ed as the squared graviton mass µ2, since the Ein-
stein equations in the linear approximation can be
written as [7]:

(¤ + V (ϕ0))ψik = V (ϕ0)γik. (15)

Here, in contrast to the free massive Fierz-
Pauli equation in the Minkowski space, the term
V (ϕ0)γik is the stress-energy tensor of the scalar
field in the ground state. Assuming that |C| is
small as compared with m2/k2 we get the esti-
mate µ2 ≈ |C|/2.

We write the gravitational field Lagrangian
in the same form as in general relativity. The total
lagrangian of the theory takes the form:

L = − 1
16πG

R
√−g +

1
2
(

ϕ,iϕ
,i

1 + 2kϕ
−

m2ϕ2 − C(1 + 2kϕ)2)
√−g + LM . (16)

For such a choice of the Lagrangian, the pos-
tulate about the source holds for the gravitational
field [7]: the source of the gravitational field is the
total stress-energy tensor of all fields of matter in-
cluding the scalar field and the gravitational field.

Lagrangian (16) can be reduced to the La-
grangian of the scalar-tensor theory of gravity [9].
We use fik (10) as a new metric and the quantity
ψ:

ψ =
1

1 + 2kϕ
(17)

as a new scalar field. The scalar curvature R is
expressed in terms of the new variables in the fol-
lowing way:

R =
1
ψ

R̃− 3
ψ2

f ikψ;i;k +
3

2ψ3
f ikψ,iψ,k, (18)

where R̃ is the scalar curvature that is defined
using the metric gik, the covariant derivatives are
also defined using the metric fik. With the help
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of equation (18) the Lagrangian of the theory in
the new variables takes the form:

L = − 1
16πG

ψR̃
√
−f +

1
8k2ψ2

(1− 3k2ψ

4πG
f ikψ,iψ,k)

√
−f −

1
2
(C +

m2

4k2
(ψ − 1)2)

√
−f + LM , (19)

where f = det(fik).
Note that the constant C/2 enters into la-

grangian (19) in the same way the cosmological
constant enters into the standard Lagrangian of
general relativity.

3. Cosmological scenario

Consider the scenario of the Universe evolu-
tion in the given scalar-tensor theory. The met-
ric of the homogenous and isotropic Universe
is the Robertson-Walker metric with a flat 3-
dimensional space:

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2). (20)

The reason for choosing the flat model is
mostly the observational evidence. In addition, if
the problem is solved in the framework of RTG,
flat model is the only acceptable one [7].

We are interested in the evolution of the Uni-
verse at the epoch following the annihilation of
electron-positron pairs. At the given epoch we can
treat matter as consisting of the cold matter that
includes the barionic and dark matter and the ra-
diation that includes photons and three types of
neutrino and antineutrino. The equation of state
is pCM = 0 for the cold matter and pr = εr/3 for
the radiation.

The equations of matter evolution follow
from the gravitational field equations and have
the form

(T (CM)k
i + T (r)k

i + Tϕk
i );k = 0, (21)

where the indices CM , r, ϕ denote the quantities
related to the cold matter, the radiation and the
scalar field respectively.

The scalar field and the metric appear in
matter lagrangian only in the combination fik

(10). Therefore equations (21) can be written in
the following form:

∇̃k

(
T̃

(CM)k
i + T̃

(r)k
i

)
= 0, (22)

where the quantities ∇̃i and T̃ik are defined using
the metric fik (10). Specifically

T̃ik =
2√−f

δLM

δf ik
. (23)

Equations (22) coincide with the equations of
matter evolution in general relativity, hence the
energy densities ε̃ = T̃ 0

0 of matter and radiation
satisfy the equations:

ε̃CM ã3 = const, ε̃rã4 = const, (24)

where ã =
√

1 + 2kϕa is the scale factor defined
using the metric fik. Taking into account the re-
lation ε = (1 + 2kϕ)2ε̃ we reduce equations (24)
to the form

εCMa3

√
1 + 2kϕ

= const, εra4 = const. (25)

Constants in equations (25) are found from
initial conditions. With the assumption that at
present time the influence of the scalar field on
observations is negligible (the exact criterion will
be given below) the following equalities hold at
present time [10]:

εr(0) =

(
1 +

21
8

(
4
11

)4/3
)

π2T 4
0

15(~c)3
,

εCM (0) = (1− ΩDE)εc − εr(0), (26)

where εc = 3H2
0/8πG is the critical density, H0 is

the Hubble constant at present time, ΩDE is the
dark energy density in the units of critical density,
T0 = 2.7 K= 2.3 · 10−4 erg is the temperature of
the cosmic microwave background.
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Scalar field lagrangian (11) can be trans-
formed into a standard form by the variable
change:

Φ =
1
k

√
1 + 2kϕ, ϕ =

k2Φ2 − 1
2k

. (27)

Then, the equation (11) takes the following
form:

L =
1
2
(Φ,iΦ,i − V (Φ)

√−g + LM (
1

k2Φ2
gik, ΨM ),

(28)
where the potential V (Φ) is defined by expression
(13). We write it as a function of the variable Φ:

V (Φ) =
m2

8k2

(
k2Φ2 − 1

)2 +
1
2
Ck4Φ4. (29)

Field equations obtained by varying (28)
have the form

Φ;i
;i + V ′(Φ) = − 1

Φ
TM . (30)

The evolution of the Universe is determined
by the Einstein equations and scalar field equa-
tion (30). Three equations are independent among
them:

Ḣ = −4πG

(
εCM +

4
3
εr + εϕ + pϕ

)
, (31)

Φ̈ + 3HΦ̇ + V ′(Φ) = −εCM

Φ
, (32)

3H2

8πG
= εCM + εr + εϕ. (33)

Here, dot denotes the derivative with respect to
time t, the Hubble constant is defined by H =
ȧ/a, the energy density and pressure of the scalar

field are given by

εϕ = Tϕ0
0 =

1
2
Φ̇2 + V (Φ),

pϕ = −Tϕ1
1 =

1
2
Φ̇2 − V (Φ). (34)

The energy densities εCM and εr are de-
termined by equations (25). The analysis of the
numerical solution of system (31)with the initial
conditions:

a(0) = 1, H(0) = H0, Φ(0) = Φ0, Φ̇(0) = Φ̇0.
where t = 0 denotes the present time,shows that
for a certain restriction on parameters the so-
called slow-roll regime, in which the scalar field
well models the dark energy, is possible [12].

4. Conclusion

In the present work the nonlinear scalar field
interacting with the gravitational field and matter
is introduced in the way analogical to the intro-
duction of nonlinear tensor field describing grav-
itation in RTG. The requirement that the source
of the field is the trace of its own stress-energy
tensor leads to the lagrangian containing three
arbitrary parameters. These parameters are con-
nected with the scalar field mass, the cosmological
constant and for a certain restriction on one of the
parameters with the graviton mass. The analysis
of the cosmological solution for the homogenous
and isotropic Universe shows that the scalar field
may model the dark energy in agreement with
modern observational data.
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