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Abstract—For different decision-making systems, they
build knowledge bases with sets of fuzzy logic rules and
when constructing these rules on the basis of statistical
information, a complex question is the determination of the
number of clusters. The article is devoted to the analysis of
methods that allow to automatically determine the number
of clusters and their application in decision-making systems.
The analysis conducted helped to distinguish the elbow
method as the most suitable of all the scanned ones. This
was able to find the optimal number of clasters on a test
data set.
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I. INTRODUCTION

Today clustering tasks are relevant for many areas of
activity. Clustering is intended to divide a set of objects
into homogeneous groups, and its purpose is to search
for existing structures. This process is used in com-
puter graphics - for image segmentation, for classifying
search results, for processing tables and documents, in
marketing - for identifying groups of customers, buyers,
and goods for developing promotion strategies. At the
same time, each data domain has its own particular data
sets, for example, in technical data collection systems
one has to work with numerical characteristics that have
a unique assessment, and for example, when working
with user / enterprise data, the data has a completely
different format. Based on this, different clustering and
data processing algorithms are used.

The problem of determining the number of clusters is
one of the main unsolved problems of cluster analysis.
The two most used types of cluster analysis procedures
are: hierarchical and iterative. For iterative algorithms,
the number of clusters is one of the input parameters of
the algorithm. For hierarchical procedures, visual anal-
ysis of a dendrogram is typical, and the most preferred
number of clusters is determined from it. [1]

Despite the apparent diversity, so far no universal
algorithm has been found that would be effective for data
of different nature.

Most of the existing methods are based on indexes
comparing the degree of “scatter” of data within clusters

and between clusters, on the calculation of the values
of heuristic characteristics (stability functions), showing
compliance assigned clusters for selective elements of the
set, on the statistics defining the most likely solution,
either by estimating the density of distributions. The
difference between the levels of association, which can
be determined by the dendrogram, is the simplest and
most popular solution.

However, this visual analysis of the dendrogram is
extremely difficult when:

1) a large number of objects under consideration;
2) implicit expressiveness of the data structure.

For the k-means clustering algorithm, the input param-
eter k is used, which determines the number of clusters.
The parameter £ may be erroneous. It depends on the
shape and scale of the distribution of points in the data
set. The number of clusters can be from one to n — 1,
where n is the number of objects in the sample. Ie all
objects belong to one cluster or each object is a cluster.

(2]

If the number of clusters k& from a given data set
is not obvious or is not specified by an expert, there
are methods for it that help to make a decision. These
are direct methods and methods of statistical testing: 1.
Direct methods: these are optimization of the criterion
within cluster sums of squares (the “elbow” method) or
the average silhouette. 2. Methods of statistical testing:
consists of comparing evidence against the null hypoth-
esis. An example is the statistics gaps. The method is
selected depending on the characteristics of the data set.

One of the important issues dealt with in this paper
is a problem of the clusters number definition in the
process of clustering that based on the statistical data.
The number of clusters determines exactly the fuzzy
logical rules number that formed the fuzzy knowledge
base. Based on this the correct determination of the
clusters number has a significant impact on the quality
of the resulting fuzzy logic rules and consequently the
quality of the fuzzy knowledge base in general.
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II. CLUSTERING METHODS ANALYS
A. The eblow method

The elbow method is based on the use of the per-
centage of variance, which is a function of the number
of clusters. The main task is to determine the number
of clusters, such that adding another cluster should not
provide a significant improvement in data modeling.
This means that if we build the percentage of variance
explained by clusters against the number of clusters, the
first clusters will add a lot of information (they will
explain a large variance), with a subsequent change in the
number of clusters, the limiting gain starts to decrease
sharply, and a clear sectional error appears on the graph.
At this point of inflection, the number of clusters is
determined, and from this the name “elbow criterion”
emerges. But this inflection point may not always be
uniquely identified [1]. The percentage of variance is
determined by the ratio of the variance between groups
to the total variance, also known as the F-test. A slight
change in this method shows the curvature of the intra-
group dispersion [2,3].

The optimal number of clusters can be determined as
follows:

1) Calculate the clustering algorithm (for example, k-means
clustering) for different values of k. For example, vary-
ing k from 1 to 10 clusters.

2) For each k, calculate the total intracluster sum of the
square (Wss).

3) Get the wss curve in accordance with the number of
clusters k.

4) The location of the bend on the graph is usually con-
sidered as an indicator of the corresponding number of
clusters. [3]

Consider a multivariate observation x; =
(%4, Ty, oy 24,)s 7 = 1,...,m, containing n independent
objects measured on p variables. For any partition of
the n objects into g clusters (P,), denote by C,, the
set of objects allocated to the mth cluster and by nm
the number of objects in C,,,, m =1,--- , g. Denote by
d;,i’ the distance between objects 7 and 7’. The sum of
pairwise distances between objects in the mth cluster is
given by

D= Y digy (1)

i, Ecm

For a fixed value of g, define

g
1
Wy=3" 5 —Dm @
m=1

Note that W, in (2) is a typical measure of the within-
clusters homogeneity associated with P, a small value
of which reflects a good fit of a classification to the “true”
cluster structure of data.

In the above definition of W, d;,i' can be any arbitrary
measure of distance. If the squared Euclidean distance
is used, simple mathematical derivation shows that W,
is monotonically decreasing in g. Hence, W, is not

informative in choosing the optimal number of clusters
by itself. However, for data strongly grouped around G
centers, it is expected that the value of function W,
will drop quickly as ¢ increases until it reaches the
“true” number of clusters in the data. Intuitively, W,
will decrease at a much slower rate when g > G since
with more than G centers, objects belonging to the same
cluster will be partitioned.[4,5]

Therefore, an “elbow” point in the curve of W, may
indicate the optimal estimate of the number of cluster in
data.

In estimating the number of clusters in a data set,
methods based on the W, criterion are aimed at ap-
propriately determining the “elbow” point in W, where
W, is sufficiently small. The idea of the gap method
is to compare the curve of W, from the original data
to the curve of the expected) under an appropriate null
reference distribution. The best estimate of the cluster
number is g if W, falls farthest below the expected curve
at g = §. Defining the gap statistic as

Gapn(g) = Ey, {log(Wy)} — log(Wy) 3

the estimate ¢ is the value of g which maximizes
Gapn(9).

An essential step of the gap method is to generate
suitable reference data sets which are used to obtain
the benchmark of the within-clusters dispersion for
comparison. The reference data can be generated by
incorporating information about the shape of the data
distribution. By definition, application of the gap method
does not depend on the clustering method used. For
example, Tibshirani et al. implemented the gap method
under the contexts of both K-means and hierarchical
clustering methods in their research. Simulation studies
showed that the gap method is a potentially powerful
procedure in estimating the number of clusters for a
data set. Moreover, the gap method has the advantage
over most of the other estimating methods that it can be
used to test the null hypothesis about homogeneous non-
clustered data against the alternative of clustered data.

However, a deficiency of the gap method in finding
the correct number of clusters has been demonstrated
in more recent studies. For example, the gap method
failed to detect the 4-cluster structure in the simulated
data which contain well-separated clusters generated
from distinct exponential distributions. In microarray
data analysis, Dudoit and Fridlyand developed the Clest
method and compared it with several other existing
methods including the gap method. They noted that the
gap method tends to overestimate the number of clusters.
One possible reason for such a deficiency in using the gap
method may be because Wy, a statistic summarizing the
within-clusters homogeneity, is not suitable in measuring
the clustering adequately.[5]
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B. The silhouette method

The average data power criterion is a criterion for
estimating the natural number of clusters. The silhouette
of a data instance is a measure of how closely it is
compared with the data within its cluster and how weakly
it is compared with the data of the neighboring cluster,
that is, the cluster, the average distance from which is
the lowest. The silhouette value maximally close to 1
means that the base point belongs to the corresponding
cluster. When the silhouette value is close to -1, it can
be concluded that the point does not belong to the given
cluster.

Optimization techniques, such as genetic algorithms,
are useful in determining the number of clusters that
give the largest silhouette. It is also possible to scale
the data so that the silhouette is maximized with the
correct number of clusters. In general, this means that
it measures the quality of clustering and determines
how well each object is located within its cluster. The
higher the average width, the better the clustering. The
mean silhouette method calculates the mean observation
silhouette for different values of k. The optimal number
of clusters k is one that maximizes the average silhouette
in the range of possible values for k. [3,6]

The algorithm is similar to the elbow method and can
be computed as follow:

1) Compute clustering algorithm (e.g., k-means clustering)

for different values of k. For instance, by varying k from
1 to 10 clusters.

2) For each k, calculate the average silhouette of observa-

tions (avg.sil).

3) Plot the curve of avg.sil according to the number of

clusters k.

4) The location of the maximum is considered as the
appropriate number of clusters. [3]

C. Silhouette statistic

Kaufman and Rousseeuw proposed the silhouette in-
dex as to estimate the optimum number of clusters in
the data. The definition of the silhouette index is based
on the silhouettes introduced by Rousseeuw, which are
constructed to show graphically how well each object
is classified in a given clustering output.[5] To plot the
silhouette of the mth cluster, for each object in C,,,
calculate s(i) as

a(i) = average dissimilarity of object i to all other
objects in the mth cluster

d(i,C) = average dissimilarity of object i to all other
objects in cluster C, C' # C'm

b(Z) = mi’ﬂc;,gcm d(l, C)
N b()—a(i)
S(’L) - maacza(il;,ll)(i)}
The silhouette index, denoted by s(g), is defined as
the average of the s(7) for all objects in the data. s(g) is
called the average silhouette width for the entire data set,

reflecting the within-cluster compactness and between-
cluster separation of a clustering. Compute s(g) for g =
1,2,---. The optimum value of g is chosen such that

s(g) is maximized over all g:

G = arg mazys(g).

D. Gap statistic method

The gap statistic has been published by R. Tibshirani,
G. Walther, and T. Hastie (Standford University, 2001).
The approach can be applied to any clustering method.
The gap statistic compares the total within intra-cluster
variation for different values of £ with their expected
values under null reference distribution of the data.
The estimate of the optimal clusters will be value that
maximize the gap statistic (i.e, that yields the largest gap
statistic)[7,8]. This means that the clustering structure is
far away from the random uniform distribution of points.
(3]

The algorithm works as follow:

1) Cluster the data under investigation for fixed cluster
number, k, where £k = 1,2,-.-. Compute W, for all
values of g;

2) Generate B reference data sets in the way described
above. Cluster each of the B reference data sets and
calculate Wy'(k),b = 1,2,---,B and k = 1,2,---.
Compute the gap statistic

Gap(k) = (55) S log (W5 (k) — Log(W (k)

3) Compute the standard deviation

sdy = {(})) > i) - l‘}z} : ,

where 1
[=(35) ijlog(Wb (k)
4) Define s = sdry/1+ % The optimum number of

clusters is given by the smallest & such that
Cap(k) > Cap(k + 1) — sp4+1 [9,10,11].

III. ESTIMATION OF DIFFERENT METHODS FOR
FINDING THE NUMBER OF CLUSTERS

A software solution was created to find the number
of clusters in the data sample on different methods. Ob-
tained results (Fig. 1):Elbow method: 4 clusters solution
suggested

« Silhouette method: 2 clusters solution suggested

o Gap statistic method: 4 clusters solution suggested

The silhouette plots display a measure of how close
each point in one cluster is to points in the neighboring
clusters. This measure ranges from —1 to 1, where 1
means that points are very close to their own cluster and
far from other clusters, whereas —1 indicates that points
are close to the neighbouring clusters.

Gap statistic is a goodness of clustering measure,
where for each hypothetical number of clusters k, it
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Figure 1. Number of clusters for different algorithms

compares two functions: log of within-cluster sum of
squares (wss) with its expectation under the null refer-
ence distribution of the data. In essence, it standardizes
wss. It chooses the value where the log(wss) is the
farthest below the reference curve, ergo the gap statistic
is maximum.

The elbow method maps the within-cluster sum of
squares onto the number of possible clusters. As a rule
of thumb, you pick the number for which you see a
significant decrease in the within-cluster dissimilarity, or
so called “elbow”.

According to these observations, it’s possible to define
k = 4 as the optimal number of clusters in the data. As
we can see from the three approaches we can to a certain
extent be sure of what an optimal value for the number
of clusters can be for a clustering problem. There are
few other techniques which can also be used.

CONCLUSIONS

The article analyzes a number of clustering algorithms
and their application in decision-making systems. In a cluster
analysis, the fundamental problem is to determine the value
of the number of clusters, which has a deterministic effect
on clusterization results. However, the limitation in current
applications is that there is no convincingly acceptable solution
to the problem with the best cluster because of the high
complexity of real data sets.

Choosing the appropriate clustering method is another im-
portant step in clustering. The k-medium clustering is one of
the most popular clustering technologies used in practice.

According to the results of the study, it can be concluded
that both the k-medium method and the method of agglom-
eration hierarchical clusterization can be successfully used for

clustering in various application areas, with the results of this
clusterization being close. The main disadvantage of the k-
medium method is that it is necessary to predefine k£ - the
number of clusters and standards, which is not always possible
to make rational. The method is very sensitive to these initial
approximations of the values of the centers. To eliminate this
problem, you can use the method of gradually increasing the
number of clusters.

The disadvantage of elbow and average silhouette techniques
is that they measure only the general characteristics of cluster-
ing. A more complex way is to use the gap statistics, which
provides a statistical procedure for formalizing a heuristic
elbow / silhouette to estimate the optimal number of clusters.

In this article, we describe various methods for selecting
the optimal number of clusters in the data set. Such methods
include elbows, silhouette, and statistical methods of rupture.

Future work: Future work is to carry out research on the
possibility and quality of the resulting solution in order to
receive sets of rules for forms of fuzzy knowledge bases for
decision-making systems in technical systems.
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OoAXO4 K OIIPEJAEJIEHIIO KOJIMYECTBA
KJIACTEPOB B HABOPE JJAHHBIX

Wienko U. A., Tno6a JI. C., Byraeuko 10. M., JIsmenko A. B.

AnHoTanus — [ pa3iMuHbIX TEXHUYECKUX CUCTEM IPUHATUS
peleHnii co3aal0T Ga3bl 3HAHUI ¢ HAOOPAMH MPABUIT HEYETKON
Joruku. [Ipy noctpoeHun Takux MpaBUJI HA OCHOBE CTaTUCTHYE-
CKO¥ MH(OPMALIMHY CJIOKHBIM BOIIPOCOM SIBJISIETCS ONpeie/IeHue
KommyecTBa KiaacTtepoB. CTaThsl MOCBSIIEHA aHAIN3Y METOJIOB,
MO3BOJISIIOLIMX aBTOMATUYECKH ONPeIesIsATh KOJIMUECTBO KJlacTe-
POB C LIEJIbI0 UX NPUMEHEHUs] B CUCTEMAX NPUHATHUS PELICHU.
[IpoBeneHHbII aHATM3 MAaTEeMAaTUYECKHUX METOJIOB, TO3BOJISIO-
LIMX aBTOMAaTHUYECKU OIpeNesATh KOJIMYECTBO KJIACTEPOB IPHU
HOCTpOCHI/II/I He‘{eTKOﬁ 63.3])1 3HaHHﬁ, a 3HAYUT U KOJIMYECTBO
HEYEeTKHUX IpaBWJl, NO3BOJISAET BBIAEIUTb METOI <«JIOKTS» Kak
Haubosiee noaxoAdumidi. MeTo/ Mo3BOJIMII HANTU ONTUMAJILHOE
KOJIMYECTBO KJIACTEPOB B HAOOpE TECTOBBIX JAHHBIX.
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