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Abstract. Here is described the application of methods of optimizing POSTGRESQL database using machine 

learning algorithms and lambda architecture principles. 
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Introduction. As far as SQL is a declarative language, the performance of queries has to be 

ensured on the database level. There is a module called Planner/Optimizer that is designed to im-

prove queries performance by finding the best execution plan for a given query. Execution plans 

are defined as a set of operations that the database performs to access and process stored data. In 

order to estimate which plan to pick Planner/Optimizer module use a value called plan cost. This 

value is a sum of each operation that is going to be performed during query execution. Each oper-

ation cost is evaluated depending on a cardinality value (a number of tuples which are going to be 

processed during a plan step) and operation cost constants. Operation cost constants are required 

to estimate the cost of a query depending on a kind of computation (seq_page_cost refers to a cost 

of sequential reading of a page from a disk and is equal to 1.0, cpu_tuple_cost defines a cost of 

processing a table row on a CPU and is equal to 0.01 etc.). The approximate value of cardinality 

is fetched from statistics that the database collects, stores and constantly updates when data 

changes.  

Functional dependencies. By default, PostgreSQL assumes that columns don't have func-

tional dependencies between themselves. Thus some performance issues may occur in cases like 

querying users table with filters on age and married attributes. In case of the uniform distribution 

of users by age and assumption that you can't get married until you turn 18, database will expect 

queries SELECT * FROM users WHERE age BETWEEN 0 AND 17 AND married IS TRUE and 

SELECT * FROM users WHERE age BETWEEN 18 AND 36 AND married IS TRUE to have equal 

cardinality estimates, but in fact the first query won't return any records, while the second will 

return a few results. This will lead to performance degradation of the first query. It may be not so 
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problematic for small databases and straightforward queries, but in the case of big data and so-

phisticated selects, it may result in huge delays and even timeout errors. 

Multivariate statistics. In order to mitigate functional dependencies problem, PostgreSQL 

has a feature called multivariate statistics [1]. This kind of statistics is a multidimensional array 

(as opposed to regular one-dimensional statistics) that is used when queries with filters on attrib-

utes with functional dependencies are executed.  

Applying lambda architecture. As an alternative to multivariate statistics, machine learning 

model can be used to predict cardinality values. There are three approaches to do this: to leverage 

cardinality results after each query to train model, to use a separate worker process to constantly 

query the database and receive actual cardinality results for training and to use a mixed approach. 

The first approach has the following advantages: it requires only enabling the corresponding plugin 

and it doesn't affect the database performance as it doesn't perform any extra queries that could 

utilize CPU, interfere database and filesystem level caches etc. The first drawback is that only 

specific models like knn (k-nearest neighbors) or decision trees can be used as far as they are able 

to be trained fast (and even simultaneously in case of knn) during a single epoch. Another draw-

back is that chosen models have to be able to address concept drift that refers to prediction errors 

due to data changes (as an example, knn can mitigate them by storing only last N neighbors). The 

second approach gives an ability to choose any model including high-precision deep learning mod-

els. Issues with concept drift can be mitigated by constantly re-fitting the data. Impact on CPU and 

cache can be eliminated by creating a replica on another server only for training the model and 

then propagate it to other database servers. Drawbacks of this method are increasing administration 

complexity, having an extra server and possible obsolescence of model predictions due to concept 

drift. The third option leverages the advantages of both approaches by using an architecture similar 

to lambda architecture for big data processing [3]. In terms of lambda architecture, speed layer is 

implemented using the first approach with incrementally learning models and batch layer is im-

plemented using more precise models that are constantly re-trained on the replica. The decision on 

what model to use for the prediction on a current query (from speed or batch layer) can be done 

similar to the implementation of statistics expiration in Oracle Database [4]: consider batch layer 

model view stale, if more than 10% of rows are changed since the last re-fit on the replica. 
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Аннотация. Описано применение методов оптимизации базы данных PostgreSQL посредством алго-

ритмов машинного обучения с использованием принципов лямбда-архитектуры. 
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