
Пятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ высокого уровня»,

Минск, Республика Беларусь, 13-14 марта 2019 года

80

УДК [611.018.51+615.47]:612.086.2

MACHINE LEARNING AND LAMBDA ARCHITECTURE METHODS

APPLICATION TO OPTIMIZE POSTGRESQL DATABASE PERFORMANCE

Belarusian State University of Informatics and Radioelectronics, Republic of Belarus

E-mail: eugen.sharayev@gmail.com

Y. Sharayeu

Master student of Electronic Computing Machines Department of Belarusian State University of Informatics

and Radioelectronics. Specialty: «Technologies of virtualization and cloud computing». Graduated from the first stage

of higher education of BSUIR by specialty "Computing machines, systems and networks".

Abstract. Here is described the application of methods of optimizing POSTGRESQL database using machine

learning algorithms and lambda architecture principles.

Keywords: machine learning, relational databases, lambda architecture.

Introduction. As far as SQL is a declarative language, the performance of queries has to be

ensured on the database level. There is a module called Planner/Optimizer that is designed to im-

prove queries performance by finding the best execution plan for a given query. Execution plans

are defined as a set of operations that the database performs to access and process stored data. In

order to estimate which plan to pick Planner/Optimizer module use a value called plan cost. This

value is a sum of each operation that is going to be performed during query execution. Each oper-

ation cost is evaluated depending on a cardinality value (a number of tuples which are going to be

processed during a plan step) and operation cost constants. Operation cost constants are required

to estimate the cost of a query depending on a kind of computation (seq_page_cost refers to a cost

of sequential reading of a page from a disk and is equal to 1.0, cpu_tuple_cost defines a cost of

processing a table row on a CPU and is equal to 0.01 etc.). The approximate value of cardinality

is fetched from statistics that the database collects, stores and constantly updates when data

changes.

Functional dependencies. By default, PostgreSQL assumes that columns don't have func-

tional dependencies between themselves. Thus some performance issues may occur in cases like

querying users table with filters on age and married attributes. In case of the uniform distribution

of users by age and assumption that you can't get married until you turn 18, database will expect

queries SELECT * FROM users WHERE age BETWEEN 0 AND 17 AND married IS TRUE and

SELECT * FROM users WHERE age BETWEEN 18 AND 36 AND married IS TRUE to have equal

cardinality estimates, but in fact the first query won't return any records, while the second will

return a few results. This will lead to performance degradation of the first query. It may be not so

Y. Sharayeu

Master student of Electronic Computing Ma-

chines Department

of BSUIR

mailto:eugen.sharayev@gmail.com

Пятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ высокого уровня»,

Минск, Республика Беларусь, 13-14 марта 2019 года

81

problematic for small databases and straightforward queries, but in the case of big data and so-

phisticated selects, it may result in huge delays and even timeout errors.

Multivariate statistics. In order to mitigate functional dependencies problem, PostgreSQL

has a feature called multivariate statistics [1]. This kind of statistics is a multidimensional array

(as opposed to regular one-dimensional statistics) that is used when queries with filters on attrib-

utes with functional dependencies are executed.

Applying lambda architecture. As an alternative to multivariate statistics, machine learning

model can be used to predict cardinality values. There are three approaches to do this: to leverage

cardinality results after each query to train model, to use a separate worker process to constantly

query the database and receive actual cardinality results for training and to use a mixed approach.

The first approach has the following advantages: it requires only enabling the corresponding plugin

and it doesn't affect the database performance as it doesn't perform any extra queries that could

utilize CPU, interfere database and filesystem level caches etc. The first drawback is that only

specific models like knn (k-nearest neighbors) or decision trees can be used as far as they are able

to be trained fast (and even simultaneously in case of knn) during a single epoch. Another draw-

back is that chosen models have to be able to address concept drift that refers to prediction errors

due to data changes (as an example, knn can mitigate them by storing only last N neighbors). The

second approach gives an ability to choose any model including high-precision deep learning mod-

els. Issues with concept drift can be mitigated by constantly re-fitting the data. Impact on CPU and

cache can be eliminated by creating a replica on another server only for training the model and

then propagate it to other database servers. Drawbacks of this method are increasing administration

complexity, having an extra server and possible obsolescence of model predictions due to concept

drift. The third option leverages the advantages of both approaches by using an architecture similar

to lambda architecture for big data processing [3]. In terms of lambda architecture, speed layer is

implemented using the first approach with incrementally learning models and batch layer is im-

plemented using more precise models that are constantly re-trained on the replica. The decision on

what model to use for the prediction on a current query (from speed or batch layer) can be done

similar to the implementation of statistics expiration in Oracle Database [4]: consider batch layer

model view stale, if more than 10% of rows are changed since the last re-fit on the replica.

References
[1]. PostgreSQL 10.5 Documentation. – P. 3370.

[2]. A survey on concept drift adaptation / J. Gama [et al.] // ACM Computing Surveys. – 2014. – Vol. 46,

№ 4. – P. 1-37.

[3]. Marz, N. Big Data: Principles and Best Practices of Scalable Real-time Data Systems / N. Marz, J.

Warren. – Manning, 2015. – 308 p.

[4]. Oracle SQL Recipes: A Problem-Solution Approach / G. Allen [et al.]. – Apress, 2010. – 550 p.

ПРИМЕНЕНИЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ И ЛЯМБДА-

АРХИТЕКТУРЫ ДЛЯ ОПТИМИЗАЦИИ БАЗЫ ДАННЫХ POSTGRESQL

Е.В. Шараев
Магистрант кафедры ЭВМ БГУИР

Белорусский государственный университет информатики и радиоэлектроники,

Республика Беларусь

E-mail: eugen.sharayev@gmail.com

Аннотация. Описано применение методов оптимизации базы данных PostgreSQL посредством алго-

ритмов машинного обучения с использованием принципов лямбда-архитектуры.

Ключевые слова: машинное обучение, реляционные базы данных, лямбда архитектура.

mailto:eugen.sharayev@gmail.com

