ПОСТРОЕНИЕ МЕАНДР-ФИЛЬТРОВ ПОДСИСТЕМ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ СРЕДСТВ РАДИОМОНИТОРИНГА НА ОСНОВЕ СУБДИСКРЕТИЗАЦИИ СИГНАЛОВ

П.А. Глинка, С. В. Козлов

Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь

Аннотация. Приведен способ построения меандр-фильтров средств радиомониторинга с использованием эффекта субдискретизации, с учетом которого частотная характеристика в каждом канале обработки, образованном прореживанием цифрового сигнала на входе, периодически повторяется. Обоснована структура устройства определения частоты и требования к его параметрам.

Ключевые слова: радиомониторинг, оценивание частоты, меанд-фильтры, субдискретизация, зона Найквиста.

CONSTRUCTION OF MEANDR FILTERS OF SUBSYSTEMS FOR DETERMINING THE FREQUENCY OF RADIOMONITORING MEANS ON THE BASIS OF SUB-DISCRETIZATION OF SIGNALS

P. A. Glinka, S. V. Kozlov

Belarusian state university of informatics and radioelectronics, Republic of Belarus

Abstract. The cited method for constructing radio monitoring filtering mechanisms using the down sampling effect, taking into account the fact that each channel has a characteristic formed by a puncturing digital signal at the input, periodically repeats. The structure of the device for determining the frequency and requirements for its parameters is justified.

Keywords: radio monitoring, frequency estimation, meander filters, subsampling, Nyquist zone.

1. Введение

К подсистемам определения частоты средств радиомониторинга предъявляются требования высокоточного определения центральной частоты и ширины спектра сигналов с априори неизвестными характеристиками в широкой полосе частот при минимальном времени измерения («мгновенное» измерение частоты). Для решения этой задачи могут быть использованы многоканальные приемники на основе набора полоснопропускающих фильтров и быстрого преобразования Фурье, матричные приемники, сканирующие по частоте приемники с высокой скоростью сканирования и т.д. [1]. Одним из перспективных является приёмник, построенный на базе меандр-фильтров [2].

Меандр-фильтр (идеальный) — это фильтр, амплитудно-частотная характеристика (АЧХ) которого в пределах заданной области частот представляет собой последовательность чередующихся полос пропускания и задерживания со скважностью по частоте, равной 2 [2]. Варианты построения меандр-фильтров в аналоговом и цифровом исполнении в литературе не описаны.

В работе [3] приведён пример построения цифрового многоканального широкополосного приёмника с субдискретизацией. Как известно [4], при

субдискретизации спектр сигнала из второй и последующих зон Найквиста переносится (сжимается) в основную полосу частот, где может быть подвергнут частотной фильтрации. Зоны Найквиста чередуются с частотой дискретизации, поэтому периодическое повторения частотной характеристики может быть использовано для построения меандр-фильтров подсистемы определения частоты средств радиомониторинга.

Таким образом, целью настоящей статьи является обоснование экономичного способа построения системы меандр-фильтров подсистем определения частоты средств радиомониторинга на основе эффекта субдискретизации принимаемых сигналов.

2. ОБОСНОВАНИЕ СПОСОБА

Будем рассматривать задачу определения грубого частоты действительного узкополосного сигнала y(t) с центральной частотой спектра f_0 , находящейся в пределах полосы частот $[f_{\min}, f_{\max}]$ и шириной спектра $\Delta f_0 << f_{\max} - f_{\min}$. Частота дискретизации сигнала $F_{\mathrm{д}} \geq 2 f_{\max}$. Необходимо построить экономичную в числительном плане процедуру грубого, с точностью до ширины спектра сигнала, определения центральной частоты его спектра.

Пусть на заданном временно интервале получено $k=\overline{0,K-1}$ отсчетов $Y_k=y(t_k)$ сигнала, где $t_k=k\Delta t$; Δt - период дискретизации; K - четное число. Образуем из последовательности Y_k путем прореживания $n=\overline{1,N}$ последовательностей отсчетов

$$Z_{k_{1}}^{(1)} = Y_{k}; k_{1} = \overline{0, K - 1};$$

$$Z_{k_{2}}^{(2)} = Y_{2k_{2}}; k_{2} = \overline{0, K / 2 - 1};$$

$$Z_{k_{3}}^{(3)} = Y_{4k_{3}}; k_{3} = \overline{0, K / 4 - 1};$$

$$.....;$$

$$Z_{k_{N}}^{(N)} = Y_{2^{N-1}k_{N}}; k_{N} = \overline{0, K / 2^{N-1} - 1}.$$
(1)

Каждая n-я последовательность $Z_{k_1}^{(1)}$ представляет собой результат дискретизации исходного сигнала y(t) при частотах дискретизации $F_{\pi_n} = F_{\pi} / 2^{n-1}$. Полоса частот исходного сигнала для частоты дискретизации $F_{\pi_1} = F_{\pi}$ расположена в первой зоне Найквиста [1]. Для других частот дискретизации F_{π_n} , $n=\overline{2,N}$ полоса частот исходного сигнала расположена, последовательно, во второй, второй и третьей и так далее зонах Найквиста.

Для обработки каждой сформированной последовательности используется фильтр нижних частот (ФНЧ) с высоким значением коэффициента прямоугольности и нормированной (к частоте дискретизации) частотой среза $\gamma_{\rm cp}^*=0,25$. При

прохождении сигнала через ФНЧ будут выделяться полосы частот $\Delta F_n = k F_{_{\Pi_n}} \pm \gamma_{_{\rm cp}}^* F_{_{\Pi_n}} = (k \pm \gamma_{_{\rm cp}}^*) F_{_{\Pi_n}} \,.$

Частотная диаграмма для случая $f_{\min}=0$, $f_{\max}=F_{_{\rm Z}}/2$ в виде исходной полосы частот и полос частот на выходе ФНЧ в каждом канале (штриховка) для трех каналов обработки приведена на рисунке 1.

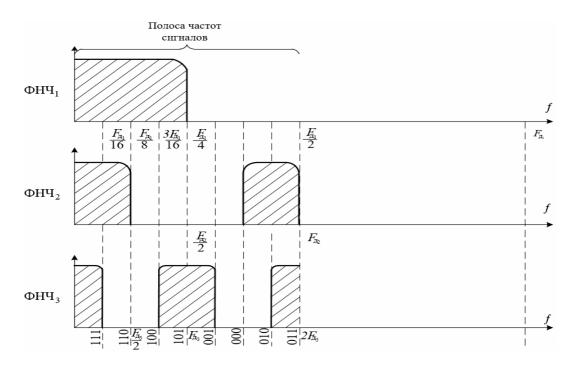


Рисунок 1. Частотная диаграмма

Как видно из рисунка 1, при попадании узкополосного сигнала в полосу частот $[0;F_{\rm A_1}/16]$ сигнал появится на выходе всех трех ФНЧ, в полосу частот $[F_{\rm A_1}/16;F_{\rm A_1}/8]$ сигнал появится на выходе только первого и второго ФНЧ, а на выходе третьего он будет отсутствовать и т.д. Коды комбинаций сработавших ФНЧ для трех каналов приведены на рисунке 1.

Таким образом, по кодам сработавших ФНЧ возможно однозначное определение диапазона частот, в пределах которого находится центральная частота спектра узкополосного сигнала.

3. СТРУКТУРА УСТРОЙСТВА ОПРЕДЕЛЕНИЯ ЧАСТОТЫ

Устройство (рисунок 2) определения центральной частоты узкополосного сигнала в заданной полосе частот содержит энергетический обнаружитель сигнала, $n=\overline{1,N}$ каналов обработки и декодер частоты. Каждый канал обработки включает устройство прореживания в 2^{n-1} раз, ФНЧ с нормированной частотой среза $\gamma_{\rm cp}^*=0,25$ и энергетический обнаружитель, осуществляющий суммирование квадратов отсчетов сигнала и сравнение с порогом. Выходные сигналы обнаружителей представляют собой

двоичный код q полосы частот, в котором находится спектр узкополосного сигнала. По указанному коду в декодере определяется истинное значение центральной частоты спектра сигнала.

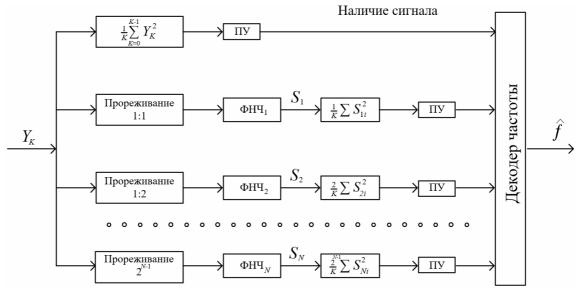


Рисунок 2. Устройство определения частоты на базе цифровых меандр-фильтров с субдискретизацией

Рациональное число каналов устройства оценивается из соотношения

$$N = \left[\log_2 \frac{f_{\text{max}}}{\Delta f_0}\right],\tag{2}$$

где [ullet] - целая сверху часть числа.

Так, например, при $F_{_{\rm J}}$ =500 МГц, $f_{\rm max}=F_{_{\rm J}}$ / 2=250 МГц и Δf_0 =1 МГц потребуется N=8 каналов обработки.

Зависимость формируемого кода q от истинного значения частоты f является нелинейной. Пример указанной зависимости для N=6 приведен на рисунке 3.

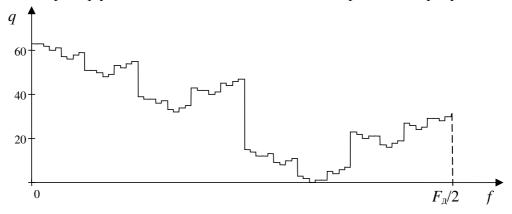


Рисунок 3. Зависимость формируемого кода от значения центральной частоты спектра

В качестве ФНЧ в каналах с учетом возможности попадания сигнала на стык амплитудно-частотных характеристик фильтра [5] целесообразно использовать фильтры с максимальным спадом АЧХ (Чебышева, Кауэра). Порядок фильтра определяется требованиями достижения заданной вероятности правильного определения центральной частоты с учетом вероятности попадания сигнала на стык частотных характеристик фильтров и ограничений по технической реализуемости.

Отметим, что введение в устройство второй ветви, структурно идентичной первой, но содержащей вместо ФНЧ фильтры высоких частот (ФВЧ), позволит на основе совместного анализа выходных сигналов обнаружителей в каждом канале определять факт наличия в принимаемой реализации более чем одного сигнала, а также, в некоторых случаях, грубо определять ширину спектра сигнала.

4. ЗАКЛЮЧЕНИЕ

Обоснованные способ и устройство определения центральной частоты на основе меанд-фильтров при субдискретизации сигналов являются простыми в реализации и могут быть использованы в подсистемах определения частоты средств радиомониторинга.

ЛИТЕРАТУРА

- 1. Рембовский А.М., Ашихмин А.В., Козьмин В.А. Радиомониторинг: задачи, методы и средства / под ред. А.М. Рембовского. М.: Горячая линия Телеком, 2006. 492 с.
- 2. Каневский 3. М. и др. Основы теории скрытности / учебн. пособие. Воронеж: ВГТУ. 2006. 212 с.
- 3. Д.В.Кондаков Д.В., Лавров А.П.. Анализ работы цифрового многоканального широкополосного приёмника с субдискретизацией // Журнал радиоэлектроники [электронный журнал]. 2019. №1. Режим доступа: http://jre.cplire.ru/jre/jan19/5/text.pdf.
- 4. Проектирование систем цифровой и смешанной обработки сигналов / Под ред. Уолта Кестера. М.: Техносфера. 2010. 328 с.
- 5. Подстригаев, А. С., Лихачев В.П. Неоднозначность определения частоты в матричном приемнике // Журнал радиоэлектроники [электронный журнал]/ 2015. № 2. Режим доступа: http://www.jre.cplire.ru/jre/feb15/13/text.pdf.

REFERENCES

- 1. Rembovsky A.M., Ashikhmin A.V., Kozmin V.A. Radio monitoring: objectives, methods and tools / ed. A.M. Rembovsky. M .: Hotline Telecom, 2006. 492 p.
- 2. Kanevsky Z. M. and others. Fundamentals of the theory of secrecy / textbook. allowance. Voronezh: VSTU. 2006. 212 p.
- 3. DV Kondakov, DV, Lavrov, AP. Analysis of the operation of a digital multichannel broadband receiver with sub-sampling // Journal of Radio Electronics [electronic journal]. 2019. №1. Access mode: http://jre.cplire.ru/jre/jan19/5/text.pdf.
- 4. Designing Digital and Mixed Signal Processing Systems / Ed. Walt Kester. M .: Technosphere. 2010. 328 p.
- 5. Podstrigaev, A.S., Likhachev V.P. The ambiguity of determining the frequency in the matrix receiver // Journal of Radio Electronics [electronic journal] / 2015. № 2. Access mode: http://www.jre.cplire.ru/jre/feb15/13/text.pdf.