Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра микро- и наноэлектроники

С. В. Гранько

# МИКРОЭЛЕКТРОНИКА И МИКРОСХЕМОТЕХНИКА

Лабораторный практикум

для студентов специальности 1-36 04 02 «Промышленная электроника» всех форм обучения

Минск БГУИР 2011

# Рецензент:

заведующий кафедрой электроники учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук,

доцент С. В. Дробот

#### Гранько, С. В.

Г77 Микроэлектроника и микросхемотехника : лаб. практикум для студ.
 спец. 1-36 04 02 «Промышленная электроника» всех форм обуч. /
 С. В. Гранько. – Минск : БГУИР, 2011. – 31 с. : ил.
 ISBN 978-985-488-763-0.

Обобщены основные сведения о технологических процессах формирования полупроводниковых приборов и интегральных схем. Практикум состоит из трех лабораторных работ, в каждой работе даны описания методик моделирования параметров технологических процессов и формируемых структур элементной базы с использованием программного продукта Icecrem 4.3.

> УДК 621.3.049.77(076.5) ББК 32.844.1я73

#### ISBN 978-985-488-763-0

© Гранько С. В., 2011

© УО «Белорусский государственный университет информатики и радиоэлектроники», 2011

# СОДЕРЖАНИЕ

|                     | СОДЕРЖАНИЕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Описание программ   | лного продукта Icecrem 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Лабораторная работа | а № 1. Моделирование процессов ионного легирования1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Лабораторная работ  | га № 2. Моделирование термических процессов1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Лабораторная работ  | га № 3. Моделирование процессов травления, осаждения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| и эпитаксии         | u cheka chuka chuk |

# Описание программного продукта Icecrem 4.3

Программный продукт Icecrem 4.3 разработан компанией «FhG-Institut fuer Integrierte Schaltungen» и предназначен для ознакомительного моделирования технологических процессов производства полупроводниковых приборов и интегральных схем. В процессе работы программного продукта используются типы файлов, которые представлены в табл.1.

Таблица 1

| Расширение | Содержание файла                                         |
|------------|----------------------------------------------------------|
| ice        | Условные обозначения технологических процессов, их режи- |
|            | мов и применяемых материалов                             |
| .doc       | Промежуточные результаты процессов                       |
| ref        | Информация в цифровом виде о профилях распределения кон- |
|            | центрации примесей в моделируемых структурах             |

Файлы, используемые в программном продукте Icecrem 4.3

На рис. 1 представлен интерфейс начальной страницы программного продукта. Интерфейс состоит из корневого меню, окна процесса и окна протокола. Корневое меню состоит из ссылок «File», «Edit», «Halt execution», «Process command», «Window», «Help». Активация ссылки «File» позволяет открывать, сохранять или вставлять файлы с процессов расширением .ref в программу (рис. 2). Активация ссылки «Edit» позволяет производить редактирование информации в окне процессов: выделение фрагментов, вырезание «cut», копирование «сору», вставка «insert», удаление «delete» и т.д.

Ссылка «Process command» позволяет формировать команды, описывающие технологические процессы, их режимы и используемые в них материалы. В данном разделе будут описаны общие команды, обеспечивающие процесс моделирования. Команды, присущие отдельным процессам, будут описаны в соответствующих лабораторных работах.



Рис. 1. Интерфейс начальной страницы программного продукта Icecrem 4.3

На рис. 3 представлена активация ссылки «Process command». В результате активизации будут представлены следующие команды (в полном и сокращенном представлении): «New Process TITLE...», «Numerical Grid GRID...», «Comment COMMENT...», «Substrate Definition SUBSTRATE...», «Ion Implantation IMPLANT», «Oxidation/Diffusion OXIDIZE...», «Oxide Deposition DEPOSIT...», «Etching ETCH...», «Epitaxy EPITAXY ...», «Diffusion Model Parameters DMODEL...», «Point Defect Parameters PDMODEL...», «Oxidation Model Parameters XMODEL...», «Plot Parameters PARAMS...», «Plot Results PLOT...», «Print Concentrations PRINT...», «Documentation Format DOCUMENT...», «Data Import/Export DATA...», «Sensitivity Analysis Sensitiv...», «Optimization OPTIMIZE...».

Команда «New Process TITLE…» производит наименование процесса моделирования (рис. 4). При этом в окне процесса появится текст:

# TITLE TITLE=BSUIR

Это означает присвоение процессу имени «BSUIR».

Команда «Numerical Grid GRID...» (рис. 5) позволяет ввести интервал сетки для расчетов и моделирования и ее максимальный интервал по глубине.

| File Edit Process commands Halt execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Uindow Help                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Processionamed         Open         Filename:         *.ice         D:\WORK\187E"1\DIPL         Files:         bkrazgo2.ice         dipl.ice         ex3.ice         ex4.ice         ex5.ice         ex6.ice         ex7.ice         ex8.ice         ex9.ice         pkrazgo2.ice         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         * | List Files of Type:<br>Process files (*.ice)  OMUCECREAMUCECRE"1  Directories:  I]  Cancel  Delete  Drives:  I-d-] |

Рис. 2. Загрузка файлов процесса



При этом в окне процесса появится текст:

TITLE TITLE=BSUIR

# GRID DXSI=0.01um XMAX=1um

Это означает, что интервал сетки установлен равным 0,01 мкм, максимальный интервал по глубине – 1 мкм. В общем случае максимальный интервал по глу-

бине следует устанавливать исходя из предполагаемой максимальной глубины процесса.

Команда «Substrate Definition SUBSTRATE...» позволяет вводить параметры полупроводниковой пластины (рис. 6). В окно «Orientation of the substrate» вводится ориентация кристаллографических плоскостей, которая может иметь индексы <100> или <111>. В окно «Doping element» вводится название основной примеси: алюминий (aluminium), сурьма (antimony), мышьяк (arsenic), бор (boron), галлий (gallium), фосфор (phosphorus).



Рис. 4. Присвоение имени процесса моделирования



Рис. 5. Введение интервала сетки для расчетов и максимальной глубины

В окно «Concentration of doping element» вводится концентрация основной примеси, в окно «Spesific resistivity» – удельное сопротивление материала кремниевой пластины. Достаточно ввести один из этих параметров, второй будет рассчитан автоматически. Например для кремния, легированного фосфором, при введении в окно «Spesific resistivity» значения 4,5 Ом·см в окне «Concentration of doping element» установится значение  $1,01 \times 10^{15}$  см<sup>-3</sup>.

В окно «Wafer thickness» вводится толщина пластины.



Рис. 6. Введение параметров полупроводниковой пластины

#### Лабораторная работа №1

#### Моделирование процессов ионного легирования

Для моделирования процессов ионного легирования используется команда «Ion Implantation IMPLANT» из ссылки меню «Process command». Для выполнения данной команды следует произвести команды, описанные в предыдущем разделе: сформировать название процесса, ввести данные об интервале сетки для расчетов и максимальной глубине, ввести данные о полупроводниковой пластине. При этом в окне процесса должен находиться следующий текст (параметры полупроводниковой пластины могут быть другими):

TITLE TITLE=BSUIR

#### GRID DXSI=0.01um XMAX=1um

#### SUBSTR ORNT=100 ELEM=Phosphorus RESIST=4.5ohm.cm

Результат активации команды «Ion Implantation IMPLANT» представлен на рис. 1.1. В окно «Element» вводится наименование имплантируемой примеси: алюминий (aluminium), сурьма (antimony), мышьяк (arsenic), ионизированная молекула  $BF_2^+$ , бор (boron), галлий (gallium), фосфор (phosphorus). В окно «Energy» вводится значение энергии имплантированных ионов. В окно «Doze» вводится значение дозы ионной имплантации. При моделировании процессов ионной имплантации в данной программной среде построение профилей распределения концентрации имплантированной примеси производится с помощью распределений Пирсона с использованием следующих моментов:

*R<sub>p</sub>* – средний проективный пробег;

 $\Delta R_p$  – среднеквадратичное отклонение от среднего проективного пробега;

*γ* – асимметрия распределения;

β – эксцесс распределения.

В среде Icecrem 4.3 предполагается наличие в полупроводниковой подложке фракции окисла и аморфного кремния, поэтому при моделировании профиля учитываются моменты распределений Пирсона при имплантации в эти среды. В общем случае эти моменты табулированы для всех значений энергии соответствующих ионов. Для решения ряда задач при моделировании процессов имплантации в различных условиях предусмотрено введение этих моментов в процессе моделирования. Для каждой среды (окисел – Oxide, кристаллический кремний – Silicon Crystalline, аморфный кремний – Amorphous) имеются окна:

«Mean projected range» – средний проективный пробег ( $R_p$ );

| Ε | <b>ICECREM 4.</b><br>File Edit Proc | .3 for WINDOWS                           | ime execution                    |           |           |            | Winde         |         |
|---|-------------------------------------|------------------------------------------|----------------------------------|-----------|-----------|------------|---------------|---------|
|   | Discourse 2                         | 60511 ico                                |                                  | _         | _         | 1          | Winde         | me noip |
|   | TITLE<br>GRID<br>SUBSTR             | TITLE=BSUIF<br>DXSI=0.01un<br>ORNT=100 E | ₹<br>n XMAX=1um<br>LEM=Phosphoru | ıs RESIS  | T=4.5ohm  | ı.cm       | 3             |         |
|   | IMPLANT                             |                                          |                                  |           |           |            |               | ×       |
|   | Element                             | Boron                                    |                                  | 🗆 High    | Temperat  | ture Impla | antation      |         |
|   | Energy :                            | 100 ke                                   | v                                | . (       |           |            |               |         |
|   | Dose :                              | 1е+013 сп                                | īl                               | ~         | Silicon:  |            |               |         |
|   |                                     |                                          | Oxide:                           |           | Crystalli | ne         | Amorphous     |         |
|   | Mean pro                            | jected range:                            | 0.3734 µ                         | m         | 0.322     | μm         | 0.322         | ]µm     |
|   | Standart o                          | deviation:                               | 0.0878 µ                         | m         | 0.1019    | µm         | 0.0809        | ]µm     |
|   | Skewness                            | 5:                                       | -1.01                            |           | -0.3333   |            | -1.05         |         |
|   | Kurtosis:                           |                                          | 4.53                             |           | 4.6       |            | 4.6           |         |
|   | Amorphiz                            | ation dose:                              | Fraction of dos                  | se in the | [         | Sensitivi  | ity & Optimiz | ation   |
|   | 0-1010                              |                                          |                                  | ome.      |           | Pa         | arameter      |         |
|   | 00+010                              |                                          | 0.01249644 9                     | 6         |           |            | Cancel        |         |
|   |                                     |                                          |                                  |           |           |            | 0K            |         |
|   |                                     |                                          |                                  |           |           |            |               |         |
|   | $\bigcirc$                          |                                          |                                  |           |           |            |               |         |
|   |                                     |                                          |                                  |           |           |            |               |         |
|   |                                     |                                          |                                  |           |           |            |               |         |
|   |                                     |                                          |                                  |           |           |            |               |         |

Рис. 1.1. Введение режимов ионной имплантации

«Standart deviation» – среднеквадратичное отклонение от среднего проективного пробега ( $\Delta R_p$ );

«Skewness» – асимметрия распределения (ү);

«Kurtosis» – эксцесс распределения ( $\beta$ ).

Также табулированной величиной является доза аморфизации, из которой автоматически пересчитывается величина, характеризующая влияние на профиль распределения концентрации имплантированной примеси аморфной фазы. Введение данных величин также предусмотрено в процессе моделирования с использованием окон «Amorphization doze» и «Fraction of dose in the amorphous profile». Предусмотрено моделирование высокотемпературной имплантации активизацией метки «High Temperature Implantation».

Для графического построения профиля распределения концентрации имплантированной примеси используется команда «Plot Results PLOT...».

Пример выполнения построения

Исходные данные:

В кремниевую пластину, основная примесь которой – фосфор, с удельным сопротивлением 4,5 Ом·см (марка кремния КЭФ4.5) производится ионная имплантация бором, энергия E = 100 кэB,  $D = 1 \times 10^{13}$  см<sup>-2</sup>.

В окне процесса режимам соответствует текст:

TITLE TITLE=BSUIR

GRID DXSI=0.01um XMAX=1um

SUBSTR ORNT=100 ELEM=Phosphorus RESIST=4.5ohm.cm

IMPLANT ELEM=Boron ENERGY=100keV DOSE=1e+013cm^-2 PLOT

После активации ссылки «Halt execution» на экране будет представлен профиль распределения концентрации имплантированной примеси (рис. 1.2). Из данного представления можно оценить поверхностную концентрацию, глубину и значение максимальной концентрации имплантированной примеси (бор), глубину металлургического перехода – глубину, на которой кривые, описывающие концентрации бора и фосфора, пересекаются. Для данного графического представления предусмотрена возможность форматирования, которое осуществляется командой «Plot Parameters PARAMS...» (рис. 1.3). Использование данной команды позволяет установить следующие параметры графического представления:

– длину горизонтальной и вертикальной осей – окна «Total length of the xaxis», «Total length of the y-axis»;

- количество декад по вертикальной оси – окно «Number of decades on the yaxis»;

- максимальное количество профилей – окно «Maximum number of profiles»;

 максимальное значение по вертикальной оси, которое определяется исходя из предполагаемой максимальной концентрации, – окно «Highest concentration of dopants».



Рис. 1.2. Профиль распределения концентрации имплантированной примеси

| ICECREM 4.3 for WINDOWS                                                                                                             |                                                | _ [ ] 2                          |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|
| ile Edit Process commands Resume execution                                                                                          | 1                                              | Window Hel                       |
| Process: 260511<br>TITLE TITLE=BSUIR<br>GRID DXSI=0.01 um XMAX=10<br>SUBSTR ORNT=100 ELEM=Phos<br>IMPLANT ELEM=Boron ENERGY<br>PLOT | um<br>sphorus RESIST=4.5c<br>=100keV DOSE=1e+0 | ohm.cm<br>13cm^-2                |
| PARAMETERS                                                                                                                          |                                                | X                                |
| 🗆 Use default values                                                                                                                |                                                |                                  |
| Total length of the x-axis:                                                                                                         | 14 cm                                          | Plot:                            |
| Total length of the y-axis:                                                                                                         | 16 cm                                          | Individual concentrations        |
| Number of decades on the y-axis:                                                                                                    | 4                                              | □ Active concentrations          |
| Maximum number of profiles:                                                                                                         | 8                                              | Total concentration              |
| Highest concentration of dopants:                                                                                                   | 0 cm-i                                         | Electron and hole concentrations |
| Deference file:                                                                                                                     |                                                | Screen plot black and white      |
|                                                                                                                                     |                                                | Paper plot black and white       |
| Select reference fi                                                                                                                 | le                                             |                                  |
| ICECREM for WINDOWS, Versio                                                                                                         | on 4.3                                         |                                  |
| Fraunhofer-Institut fuer Integrier                                                                                                  | rte Schaltungen,                               | - Darameter                      |
| Abteilung fuer Bauelementetech                                                                                                      | nologie                                        |                                  |
| Schottkystrasse 10, D-91058 Er                                                                                                      | langen                                         |                                  |
|                                                                                                                                     |                                                | UK                               |
| Abteilung fuer Bauelement<br>D-91058 Erlangen, Schottk<br>current date: 27-MAI                                                      | etechnologie<br>ystrasse 10<br>-;1 10:12:39    | * * * *                          |
|                                                                                                                                     |                                                |                                  |

Рис. 1.3. Введение параметров графического представления профилей распределения концентрации примесей

Также в данной команде предусмотрено представление профилей распределения примесей различного электрофизического состояния активацией следующих меток:

– «Individual concentrations» – концентрация атомов примеси;

 «Active concentrations» – концентрация электрически активных атомов примеси (в данной лабораторной работе активизация примеси не происходит);  «Total concentrations» – суммарная концентрация примеси с учетом знака заряда (*n*-типа, *p*-типа);

– «Electron and hole concentrations» – концентрация электронов и дырок.

Имеются метки, которые указывают на представление графиков в чернобелом изображении на экране и при печати, – «Screen plot black and white» и «Paper plot black and white». При этом графики будут отличаться только по стилю линии (сплошная, пунктирная и др.).

Для представления профилей распределения концентрации примеси в цифровом виде предусмотрена команда «Data Import/Export DATA...» (рис. 1.4), в которой имеется окно «Filename», где указывается файл с расширением .ref. После активации ссылки «Halt execution» в указанный файл сохранится представление профилей распределения концентрации имплантированной примеси в цифровом виде.

| ICECREI   | 1 4.3 for WINDOW | IS             |           |       |                  |
|-----------|------------------|----------------|-----------|-------|------------------|
| File Edit | Process commands | Halt execution | 1 Or      |       | Window Help      |
| 🖓 Proces  | s: 260511        |                |           |       |                  |
| TITLE     | TITLE=B          | SUIR           |           |       |                  |
| SUBSTI    | DATA             |                |           |       |                  |
| IMPLAN    | Mode:            |                |           | n^-2  | 2                |
| DATA      | Save: Experi     | mental data fo | rmat      | RE RE | "1\bsuir.ref MOE |
|           | Dave: Experi     |                | mat       |       |                  |
|           | Filename:        | •              |           |       |                  |
|           |                  |                |           |       |                  |
|           |                  | Salact file    | <b>a</b>  |       |                  |
|           |                  | Select III     | 5         |       |                  |
|           |                  |                | Parameter |       |                  |
|           |                  |                | Cancel    |       |                  |
|           |                  |                | 0K        |       |                  |
|           |                  |                | UK .      |       |                  |
|           |                  |                |           |       |                  |
|           |                  |                |           |       |                  |
|           |                  |                |           |       |                  |
|           |                  |                |           |       |                  |
|           |                  |                |           |       |                  |
|           |                  |                |           |       |                  |
|           |                  |                |           |       |                  |
|           |                  |                |           |       |                  |
|           |                  |                |           |       |                  |

Рис. 1.4. Активизация команды «Data Import/Export DATA...»

Данный файл носит текстовый формат и содержит следующую информацию:

ICECREM V. 4.3 27-MAI-;1 12:10:17 (программный продукт, дата и время моделирования) BSUIR (наименование процесса моделирования)

**2.273Е-03** (толщина окисла)

**PHOSPHORUS** (примесь)

1.082Е-04, 1.008Е+15 (глубина в мкм, концентрация в см

3.247E-04, 1.008E+15

.....

0.9862 , 1.008E+15

0.9963 , 1.008E+15

PHOSPHORUS ACTIVE (примесь)

2.273Е-03, 1.008Е+15 (глубина в мкм, концентрация в см<sup>-3</sup>)

0.01231 , 1.008E+15

0.9862 , 1.008E+15

0.9963 , 1.008E+15

BORON (примесь)

1.082Е-04, 2.802Е+15 (глубина в мкм, концентрация в см<sup>-3</sup>)

3.247E-04, 2.807E+15

.....

0.9862 , 9.787E+12

0.9963 , 8.542E+12

1.E30, 1.E30

BORON ACTIVE (примесь)

2.273E-03, 0.0 (глубина в мкм, концентрация в см<sup>-3</sup>) 0.01231, 0.0

0.9963 , 0.0

#### Задание к работе:

1. Провести моделирование серии процессов ионной имплантации. Параметры полупроводниковой пластины и режимы ионного легирования задает преподаватель.

2. Построить профили распределения концентрации имплантированной примеси для различных режимов ионной имплантации. Построить зависимости значения и глубины максимальной концентрации, глубины металлургического *p-n*-перехода от режимов имплантации.

3. Найти режимы ионного легирования для получения заданных преподавателем значений и глубины максимальной концентрации, глубины металлургического *p-n*-перехода. Произвести моделирование процесса имплантации при найденных режимах.

#### Содержание отчета:

1. Описание процесса ионной имплантации.

2. Профили распределения концентрации имплантированной примеси для различных режимов ионной имплантации.

3. Графические зависимости значения и глубины максимальной концентрации, глубины металлургического *p*-*n*-перехода от режимов имплантации.

4. Профиль распределения концентрации имплантированной примеси для требуемых значений и глубины максимальной концентрации, глубины металлургического *p*-*n*-перехода.

# Лабораторная работа №2

#### Моделирование термических процессов

Для моделирования термических ионного легирования используется команда «Oxidation/Diffusion OXIDIZE...» из ссылки меню «Process command». Для выполнения данной команды следует произвести команды, описанные во вводном разделе: сформировать название процесса, ввести данные об интервале сетки для расчетов и максимальной глубине, ввести данные о полупроводниковой пластине. При этом в окне процесса должен находиться следующий текст (параметры полупроводниковой пластины могут быть другими):

TITLE TITLE=BSUIR

#### GRID DXSI=0.01um XMAX=1um

#### SUBSTR ORNT=100 ELEM=Phosphorus RESIST=4.5ohm.cm

Результат активации команды «Oxidation/Diffusion OXIDIZE...» представлен на рис. 2.1. Данная команда производит моделирование термических процессов, процессов окисления и термодиффузии. Температура процесса задается в окне «Temperature», время процесса задается в окне «Time». В команде предусмотрено изменение температуры во времени в окне «Temperature ramping rate», где указывается данное изменение в единицах °C/мин. В окне «Mode» предусмотрено введение характеристик среды термического процесса: инертная среда – «Inert ambient», сухой кислород –«Dry oxidation», влажный кислород – «Wet oxidation», общая модель окисления –«General oxidation model», высокотемпературная имплантация –«High temperature implantation».

Имеются окна для введения следующих величин:

- конечная толщина окисла «Final oxide thickness»;
- давление «Pressure»;

– концентрация HCl – «HCl concentration».

При моделировании процессов окисления из трех ключевых параметров процесса: времени процесса, конечной толщины окисла и давления – вводятся две, третья рассчитывается автоматически.

Для моделирования процессов диффузии имеются окна для указания диффузанта – «Element present at the surface», его концентрации на поверхности пластины – «Concentration: Pref. cm », и энергия активации – «Act. En eV».

Пример 1. Активационный отжиг после ионной имплантации

Моделируем процесс ионной имплантации, описанный в лабораторной работе №1:

TITLE TITLE=BSUIR

# GRID DXSI=0.01um XMAX=1um

|    | TCECDEM 4 2 for WIT                | NDOWE                |                        |          |                          |                                           |         |
|----|------------------------------------|----------------------|------------------------|----------|--------------------------|-------------------------------------------|---------|
| Fi | le Edit Process comm               | ands Resum           | e execution            |          |                          | Winde                                     | ow Help |
|    | ≠ Process: 260511                  |                      |                        | _        |                          |                                           |         |
|    | TITLE TITL                         | E=BSUIR              |                        |          |                          |                                           |         |
| 1  |                                    | 9-0.01.um \          | VMAV-1.um              |          |                          |                                           |         |
| Ľ  | OXIDIZE                            |                      |                        |          |                          |                                           |         |
|    | Temperature:                       |                      | 900                    | ] "C     | Mode: Inert ambient      |                                           | •       |
|    | Time:                              |                      | 30                     | ] min    | Final oxide thickness:   |                                           | μm      |
|    | Temperature ran                    | ping rate:           |                        | ] °C/min | Pressure:                |                                           | bar     |
|    | Intrinsic concent                  | ration:              | 3.38e+018              | ] cm⁻i   | HCL concentration:       |                                           | %       |
|    | Elements preser<br>at the surface: | t Concer<br>Pref. ci | ntration:<br>m i Act.e | n. eV    | - Paskaurz               | d Eulor                                   |         |
|    |                                    |                      |                        |          | ⊡ Backwart<br>I Time-ste | p information                             |         |
|    |                                    |                      |                        |          | Sensitivi<br>Pa          | ty & Optimiza<br>arameter<br>Cancel<br>OK | tion    |
| F  |                                    |                      |                        |          |                          |                                           |         |

Рис. 2.1. Введение режимов термических операций

SUBSTR ORNT=100 ELEM=Phosphorus RESIST=4.5ohm.cm IMPLANT ELEM=Boron ENERGY=100keV DOSE=1e+013cm^-2

При этом будет сформирована модель структуры, профиль распределения примесей в которой представлен на рис. 1.2. Вводим команду отжига со следующими режимами: температура – 500 °C, время – 30 мин, инертная среда – азот. Представление команды в окне процесса следующее:

#### OXIDIZE TEMP=500oC TIME=30min

Режим построения профиля распределения концентрации примеси с учетом электрической активации осуществляется командой «Plot Parameters PARAMS...», при этом активируются метки «Active concentrations» и «Electron and hole concentrations». Представление команды в окне процесса следующее:

PARAMS ACTIVE=TRUE TOTAL=FALSE CARRIER=TRUE

#### PLOT

После активации ссылки «Halt execution» на экране будет представлен профиль распределения концентрации имплантированной примеси (рис. 2.2). Распределение атомов бора полностью совпадает с представленным на рис. 1.2, при этом представлено распределение электрически активной примеси бора, электронов и дырок. Видно, что концентрация электрически активной примеси бора ниже концентрации атомов бора (на глубине максимальной концентрации в 10 раз). Из этого следует, что примесь бора активизировалась не полностью. При установлении температуры 800° С концентрация электрически активной примеси совпадет с концентрацией атомов бора. Для исследования профилей распределения концентрации электронов и дырок в команде «Plot Parameters PARAMS...» следует увеличить число декад по вертикали – в окне «Number of decades on the y-axis». Представление команды в окне процесса следующее:

OXIDIZE TEMP=800oC TIME=30min

PARAMS NDEC=10 ACTIVE=TRUE TOTAL=FALSE CARRIER=TRUE PLOT





После активации ссылки «Halt execution» на экране будет представлен профиль распределения концентрации имплантированной примеси (рис. 2.3). Данный профиль показывает различие между металлургическим и электрическим *p*-*n*-переходами. Видно, что металлургический *p*-*n*-переход – пересечение профилей распределения концентрации бора и фосфора – находится на глубине 0,78 мкм, электрический – пересечение профилей распределения концентрации злектронов и дырок – на глубине 0,97 мкм.





# Пример 2. Окисление и разгонка примеси

Моделируем процесс ионной имплантации, описанный в лабораторной работе №1, при этом максимальную глубину следует увеличить до 5 мкм:

TITLE TITLE=BSUIR

GRID DXSI=0.01um XMAX=5um

SUBSTR ORNT=100 ELEM=Phosphorus RESIST=4.5ohm.cm

IMPLANT ELEM=Boron ENERGY=100keV DOSE=1e+013cm^-2

В качестве режимов термообработки вводим температуру 1200° С, окончательная толщина окисла 0,18 мкм, сухое окисление, время рассчитывается автоматически. Представление команды в окне процесса следующее:

# OXIDIZE TEMP=1200oC MODE="Dry oxidation" OXTHI=0.18um PARAMS NDEC=10 CARRIER=TRUE PLOT

После активации ссылки «Halt execution» на экране будет представлен профиль распределения концентрации имплантированной примеси (рис. 2.4). Видно, что образовался окисел требуемой толщины, часть примеси бора диффундировала в этот окисел, часть – в глубину. В результате операции глубина металлургического *p-n*-перехода практически сравнялась с глубиной электрического и стала равной ~ 3,6 мкм.



# Рис. 2.4. Профиль распределения концентрации имплантированной примеси, в том числе и активированной, после окисления и разгонки

#### Пример 3. Диффузия примеси

В данном примере на первоначальном этапе вводим параметры полупроводниковой пластины:

TITLE TITLE=BSUIR

GRID DXSI=0.01um XMAX=5um

SUBSTR ORNT=100 ELEM=Phosphorus RESIST=4.5ohm.cm

Вводим команду термической операции « Oxidation/Diffusion OXIDIZE...», активируем метку инертной среды «Inert ambient», вводим в окно для указания диффузанта («Element present at the surface»): примесь – бор («Во-ron»), концентрация –  $10^{18}$  см<sup>-3</sup>, температура процесса – 1200 °C, время – 10 мин. Представление команды в окне процесса следующее:

OXIDIZE TEMP=1200oC TIME=10min ELEM1=Boron CONC1=1e+018cm^-3 EA1=0eV

PARAMS NDEC=10 CARRIER=TRUE

PLOT

После активации ссылки «Halt execution» на экране будет представлен профиль распределения концентрации примеси (рис. 2.5). Видны профили распределения концентрации примесей, дырок и электронов.

Задание к работе

1. Провести моделирование процесса активационного отжига. Параметры полупроводниковой пластины и режимы ионного легирования и термообработки задает преподаватель. Построить зависимости глубин металлургического и электрического *p-n*-переходов от температуры и времени отжига.

2. Провести моделирование процесса окисления. Параметры полупроводниковой пластины и режимы ионного легирования и термообработки задает преподаватель. Построить зависимости толщины окисла, глубин металлургического и электрического *p*-*n*-переходов от температуры и времени процесса.

3. Провести моделирование термодиффузии. Параметры полупроводниковой пластины и режимы ионного легирования и термообработки задет преподаватель. Построить зависимости металлургического и электрического *p-n*-переходов от температуры и времени процесса.

Содержание отчета:

1. Описание процесса ионной имплантации.

2. Профили распределения концентрации имплантированной примеси для различных режимов ионной имплантации.

3. Графические зависимости параметров структур от режимов термообработки.



Рис. 2.5. Профиль распределения концентрации примеси после операции термодиффузии

# Лабораторная работа №3

# Моделирование процессов травления, осаждения и эпитаксии

Для моделирования процессов травления используется команда «Etching ETCH...» из ссылки меню «Process command». Для выполнения данной команды следует выполнить команды, описанные во вводном разделе: сформировать название процесса, ввести данные об интервале сетки для расчетов и максимальной глубине, ввести данные о полупроводниковой пластине. При этом в окне процесса должен находиться следующий текст (параметры полупроводниковой пластины могут быть другими):

TITLE TITLE=BSUIR

GRID DXSI=0.01um XMAX=1um

# SUBSTR ORNT=100 ELEM=Phosphorus RESIST=4.5ohm.cm

Результат активации команды «Etching ETCH...» представлен на рис. 3.1. В команде имеются окно для введения толщины остаточного окисла – «Remanig oxide thickness» и окно для введения толщины стравливаемого слоя кремния – «Thickness of etched silicon layer». При активизации одного окна второе автоматически обнуляется.

| <b>III</b> 10 | ECREM 4.3 for WINDOWS                 | -                          |      |
|---------------|---------------------------------------|----------------------------|------|
| File          | Edit Process commands Halt execution  | n Window                   | Help |
| 9 <b>3</b> P  | rocess: 260511                        |                            |      |
| TIT           | LE TITLE=BSUIR<br>ID DXSI=0.01um XMAX | <=2um                      |      |
| SU            | ЕТСН                                  | ×                          |      |
| OX<br>ET      | Remaining oxide thickness:            |                            |      |
| PL            | μm                                    |                            |      |
|               | Thickness of etched silicon la        | yer:                       |      |
| 1)            | μm                                    | Sensitivity & Optimization |      |
|               |                                       | Parameter                  |      |
|               |                                       | Cancel                     |      |
|               |                                       | ОК                         |      |
|               |                                       |                            |      |
|               |                                       |                            |      |

Рис. 3.1. Результат активации команды «Etching ETCH...»

Для моделирования процессов осаждения используется команда « Oxide Deposition DEPOSIT...» из ссылки меню «Process command». Для выполнения данной команды следует выполнить команды, описанные во вводном разделе: сформировать название процесса, ввести данные об интервале сетки для расчетов и максимальной глубине, ввести данные о полупроводниковой пластине.

Результат активации команды « Oxide Deposition DEPOSIT...» представлен на рис. 3.2.

| File Edit Pro     | ess commands Resume execution | Window Y                                                |
|-------------------|-------------------------------|---------------------------------------------------------|
| 🚽 Process: 2      | 60511                         |                                                         |
| TITLE             | TITLE=BSUIR                   |                                                         |
| GRID              | DXSI=0.01um XMAX=2um          |                                                         |
| SUBSTR<br>OVIDIZE | TEMP=1200aC TIME=10min M      | S RESIST=4.50nm.cm                                      |
| UNIDIZE           | TEMI -T2000C TIME-T0IIII M    | ODE- ITCI OXIGATION                                     |
| DEPOSIT           |                               | ×                                                       |
| Total oxi         | de thickness: µm              | λ                                                       |
|                   | cm <sup>-</sup> i             |                                                         |
|                   | ✓ cm⁻i ✓ cm⁻i ✓ cm⁻i ✓ cm⁻i   | Sensitivity & Optimization<br>Parameter<br>Cancel<br>OK |

Рис. 3.2. Результат активации команды « Oxide Deposition DEPOSIT...»

В команде имеются окно для введения толщины наносимого окисла – «Total oxide thickness», окно для указания примеси в наносимой пленке – «Elements in the deposited oxide» и окно для введения ее концентрации – «Concentration». Для моделирования процессов эпитаксии используется команда «Epitaxy EPITAXY ...» из ссылки меню «Process command». Для выполнения данной команды следует выполнить команды, описанные во вводном разделе: сформировать название процесса, ввести данные об интервале сетки для расчетов и максимальной глубине, ввести данные о полупроводниковой пластине. Результат активации команды « Oxide Deposition DEPOSIT...» представлен на рис. 3.3.

Имеются окна для указания примеси – «Element», введения температуры процесса – «Temperature», времени – «Time», скорости роста – «Epitaxial growth rate» и других параметров.

| ICECREM 4.3 f    | or WINDOWS                    |                              |               |                  | _ [] >      |
|------------------|-------------------------------|------------------------------|---------------|------------------|-------------|
| File Edit Proces | s commands - Resume (         | execution                    |               |                  | Window Help |
| 🖅 Process: 260   | 511                           |                              |               |                  |             |
| TITLE            | TITLE=BSUIR                   |                              |               |                  |             |
| GRID             | DXSI=0.01um XI                | MAX=2um                      |               |                  |             |
| SUBSTR           | URNIFIUU ELEP                 | VI=Phosphoru<br>CIME=10min I | IS RESISTER.5 | Ohm.cm           |             |
| TOTION           | TEMP-12000C1                  | IME-TUIIIII                  | MODE- WEID    | xiuauon          | ~           |
| EPITAXY          |                               |                              |               |                  | <u>×</u>    |
| Element :        |                               | Phosphorus                   |               | Backward-Euler   |             |
| <b>-</b>         |                               | 1050                         |               | Time-step inform | ation       |
| Temperature:     |                               | 1030                         |               | •                |             |
| Time:            |                               | 10                           | min           |                  |             |
| Epitaxial grow   | /th rate:                     | 0.2                          | µm/min        |                  |             |
| Input dopant p   | oartial pressure:             | 1e-010                       | bar           |                  |             |
| Initial dopant   | concentration:                |                              | cm⁻i          |                  |             |
| Intrinsic conc   | entration:                    | 7.96e+018                    | cm⁻i          | Sensitivity & Op | timization  |
| Rate constant    | i k :                         | 0                            | 1/(µml s bar) | Paramete         | :r          |
| Thermodynam      | nic constant K <sub>P</sub> : | 2.04e+013                    | 1/(µmi bar)   | Cancel           |             |
| Thermodynam      | nic constant K <sub>A</sub> : | 1.96e-012                    | µmi s bar     | OK               |             |
| <b>N</b>         |                               |                              |               |                  |             |

Рис. 3.3. Результат активации команды «Epitaxy EPITAXY ...»

# Задание к работе

1. Провести моделирование процесса травления. Параметры исходной структуры и режимы травления задает преподаватель. Построить зависимости глубин металлургического и электрического *p*-*n*-переходов от режимов травления.

2. Провести моделирование процесса осаждения. Параметры исходной структуры и режимы осаждения задает преподаватель. Построить зависимости толщины и состава пленки от режимов осаждения.

3. Провести моделирование процесса эпитаксии. Параметры полупроводниковой пластины и режимы процессов эпитаксии, термообработки задет преподаватель. Построить зависимости металлургического и электрического *p*-*n*-переходов от режимов процесса.

Содержание отчета:

1. Описание процессов травления, осаждения и эпитаксии.

2. Профили распределения концентрации имплантированной примеси для различных режимов травления, осаждения и эпитаксии.

3. Графические зависимости параметров структур от режимов травления, осаждения и эпитаксии.

30

Св. план 2011, поз. 80

Учебное издание

Гранько Сергей Владимирович

# МИКРОЭЛЕКТРОНИКА И МИКРОСХЕМОТЕХНИКА

Лабораторный практикум

для студентов специальности 1-36 04 02 «Промышленная электроника» всех форм обучения

Редактор Т. П. Андрейченко Корректор И. П. Острикова Компьютерная верстка Ю. Ч. Клочкевич

Подписано в печать 01.09.2011. Гарнитура «Таймс». Уч.-изд. л. 2,0. Формат 60х84 1/16. Отпечатано на ризографе. Тираж 100 экз.

Бумага офсетная. Усл. печ. л. 1,98. Заказ 356.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» ЛИ №02330/0494371 от 16.03.2009. ЛП №02330/0494175 от 03.04.2009. 220013, Минск, П. Бровки, 6 Euonuomekatikuk