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Abstract 

Equation for spin 1/2 particle with two mass states is investigated in presence 

of magnetic field. The problem reduces to a system of 4 linked 2-nd order differential 

equations. After diagonalization of the mixing term, separate equations for four 

different functions are derived, in which the spectral parameters coincide with the 

roots of a 4-th order polynomial. Solutions are constructed in terms of confluent 

hyper-geometric functions; four series of energy spectrum are found. Numerical study 

of the spectra is performed. Physical energy levels for the two mass fermion differ 

from those for the ordinary Dirac fermion. 
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I Introduction 

 

In (Kisel, 2017), a relativistic model for a spin 1/2 particle with two masses was 

developed (in general, existence of more general wave equations than commonly 

used ones is well known within the so-called Gel’fand–Yaglom formalism (Gel’fand 

and Yaglom, 1948); also see (Bhabha, 1952), (Fedorov, 1952),(Shimazu, 1956); and 

the books (Pletjukhov et al, 2015), (Kisel et al, 2018). 

In (Kisel et al, 2017) it was shown that in absence of external fields the main 

equation for the fermion with two masses, 1M  and 2M , is split into two separate 

Dirac-like equation. Also it was shown that in presence of external electromagnetic 

fields there arises a more complicated wave equation which mixes two bi-spinor 

components.  

This wave equation with respect to bi-spinor functions 1( )x  and 2 ( )x  has the 

structure 
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1 1 1 1 2( ) 0iD M b a           


2 2 2 2 1( ) 0iD M a b           

 

 

(1) 

 

where (Red’kov, 2009) 
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we  employ the tetrad formalism and use the denotation e c e  . 

 

We use the following parameters (the quantities    appear when constricting Eq. 

(1)): 
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II.    Main Part 

In the present paper, this equation is solved in presence of uniform magnetic field.  

In cylindrical coordinates the field is specified by potential 

 

2/BrA  ;  

 

further we use shortening notations (additionally note physical dimensions of the 

quantities) 

 

2 1  [ ]     [ ]
eB mc

B B L M M L
c

        
 

 
 

 

 

Then the extended derivative is 

 

 0 1 2 3

2

i Br
D i i i

t r r z


   

   
      

   

 

 
2 1

3( ) ( )e x F x iB iB

       

 

 

 

(3) 

 

final system taking the form: 

 


1 1 3 1 1 3 2( 2 ) 0iD M b B a B           

 


2 2 3 2 2 3 1( 2 ) 0iD M a B b B           

 

 

(4) 

 

Below we use shortening notations 

 

1 1 1 12    b B a B R        

 

2 2 2 22    a B b B R         

 

1( )       [ ]
2

m Br
r L

r c


         


 

 

 

 

 

 

(5) 

 

parameters 1 2  and 1 2R   have physical dimension of length. 

For the wave function 1 2{ }     the following substitution is used 
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1 1

2 2

1 2

3 3

4 4

( ) ( )

( ) ( )
 

( ) ( )
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i t im ikz i t im ikz

f r g r

f r g r
e e e e e e

f r g r

f r g r

          

 

 

(6) 

 

 

and further get 8 equations (let ( )i d dr D    )  

 

3 1 1 1 1 1 4( ) ( )k f M f R g D f          

 

1 1 1 3 1 3 2( ) ( )k f M f R g D f          
 

3 2 2 1 2 1 4( ) ( )k g M g R f D g          
 

1 2 2 3 2 3 2( ) ( )k g M g R f D g          

 

 

 

 

 

 

(7) 

4 1 1 2 1 2 3( ) ( )k f M f R g D f          

 

2 1 1 4 1 4 1( ) ( )k f M f R g D f          

 

4 2 2 2 2 2 3( ) ( )k g M g R f D g          

 

2 2 2 4 2 4 1( ) ( )k g M g R f D g          

 

 

 

 

 

 

 

(8) 

 

These two sub-systems are solved with respect to 
1 3 1 3f f g g    and 

2 4 2 4f f g g    (for 

brevity we write down only its structure):  

 

1 11 212 13 14

3 21 22 23 24 4

1 31 32 33 34 2

3 41 42 43 44 4

f A A A A D f

f A A A A D f

g A A A A D g

g A A A A D g
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Combining these relations, C AB , we derive  
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1 11 112 13 14

3 21 22 23 24 3

1 31 32 33 34 1

3 41 42 43 44 3

f C C C C D D f

f C C C C D D f

g C C C C D D g

g C C C C D D g

 

 

 

 

   

 

 

(9) 

 

or in the matrix form 

 
1( )D D F F C

         (10) 

 

The matrix   can be found in the explicit form, but for brevity we omit it. 

Omitting details of diagonalizing the matrix   (see below), we write down only 

relations determining the eigenvalues 
i : 

 
2 22[(16 4 ) 4[4 ( )]R y E Rx y yx E       

2 2 24 ( ) ( ) ]R x yx       

2 2 2 2 2 2
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2 22[(16 4 ) 4[4 ( )]R y E Rx y yx E       
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(12) 

 

Here we use the following denotations: 

 
2 2 2

1 2 1 2    k E M M M M            

 
2 2 2

1 2 1 2    .k E M M M M           

 

 

(13) 

 

In this way, we have 4 second order equations ofthe same type: 

 

( ) ( )( ) 1 2 3 4i iiD D iF F           (14) 

 

or in explicit form ( 1 2 3 4i     ) 
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The problem is reduced to confluent hyper-geometric equations; their solutions and 

energy spectra being known (by physical reasons assume 0  ):  

 

4 {0 1 2 }i i ibn n         (16) 

In order to examine equations(11) and (12) (with spectra (16) in mind) we need 

explicit form of all involved parameters. So we probe (let
0M M   ):  

 
2 2 4
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B B
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(17) 

 

In the sequel we use thedimensionless parameters: 
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(18) 

 

For E  we have the following 4-th order algebraic equation (recall that

4i iBn   ): 
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(19) 

 

Let us write down several examples of numerical results: 
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1    sin 1 10B       

1n    

1 2 3 42 23  399 00  2 24  399 01E E E E           

5n    

1 2 3 44 58  399 02  4 59  399 03E E E E           

10n    

1 2 3 46 40  399 04  6 41  399 05E E E E             

1    sin 9 10B       

1n    

1 2 3 41 00  3 03  3 48  5 51E E E E             

5n    

1 2 3 43 16  4 75  5 64  7 23E E E E             

10n    

1 2 3 44 90  6 35  7 38  8 83E E E E             

 

 

Evidently, the energy levels make up 4 series. 

In the end, taking into account relations 0y   and 
1 2     , let us simplify the 

form of the generalized equation in presence of magnetic field Indeed, with the help 

of elementary change in notations 

 

1 1 1 2 2 2R R          

 
2 2

1 2

0

2 sin sin

3 cos 3 cos

B B
R R R

M

 

 
     

 
 

 

 

the system reduces to more simple and symmetrical form 

 


1 3 1 3 2( ) 0iD M R         

 


2 3 2 3 1( ) 0iD M R         

 

 

 

(20) 

III.    Results and Discussions 

 In the paper, a new   wave equation for a spin ½ fermion, which is 

characterized by two mass parameters, is solved in presence of external uniform 

magnetic field.  Obtained results indicate that such a particle will manifest itself 

differently in comparison with the ordinary Dirac particle. This property might be 
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tested experimentally. It would bedesirable to get explicit solutions of such a 

generalized equation in presence of other electromagnetic potentials. For instance, 

exact solutions may be found in presence of a uniform electric field, this problem will 

be studied in a separate work. Also interesting is the case of Coulomb potential, 

because far from the origin we must see two free particles with different masses, 

whereas near the origin such a separation appears to be impossible because of the 

mixing interaction ofthe two components. 

IV.    Conclusion 

Generalized equation for spin 1/2 particle with two mass states is investigated 

in presence of external uniform magnetic field. After separation of the variables in 

cylindrical coordinates the problemreduces to a system of eight first-order differential 

equations, whence it follows the system of four equivalent second-order differential 

equations. After diagonalization of the mixing term, separate equations for four 

functions are derived, in which the spectral parameters coincide with the roots of  

4-th order polynomial. Solutions to the system in question are constructed in terms of 

confluent hyper-geometric functions, analytical formulas for two series of energy 

spectrum can be found in explicit form as solutions of the 4-th order algebraic 

equations, however they are cumbersome and useless. Numerical study of the energy 

levels is performed depending the parameter  , determining the mass values, on the 

magnitude of the magnetic field and the magnetic and main quantum numbers: 

1 2 ( )E E B m n    . So, physical energy spectrum for a two mass fermion differs 

significantly from the energy spectrum of the ordinary Dirac particle. 
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