Применение контроллера нечеткой логики для управления ветроэлектрической установкой

Санкевич С.А. Петренко Ю.Н.

Кафедра электропривода и автоматизации промышленных установок и технологических комплексов Белорусский национальный технический университет Минск, Республика Беларусь

e-mail: sanches-korn@tut.by, ypetrenko@bntu.by

Аннотация—Приводится пример применения контроллера нечеткой логики (КНЛ) в системе управления (СУ) ветроэлектрической установки (ВЭУ).

Ключевые слова: нечеткая логика; ветроэелектрическая установка; моделирование

Несмотря на все нарастающее загрязнение окружающей среды и удорожание ископаемых энергоносителей, нетрадиционная энергетика нашей страны развивается незначительными темпами. Этому способствует дешевизна электроэнергии от тепловых электростанций относительно (ВЭУ). ветроэлектрических установок ветроагрегатов малой мощности она начинается от 1200 долл. за 1 кВт установленной мощности[1]. Особенности ВЭУ малой мощности обусловлены спецификой рынка данной категории ветроагрегатов, рассчитанной на индивидуальных потребителей частного сектора И малый бизнес. платежеспособность индивидуальных потребителей и невозможность (или ограниченные возможности) профессионального технического обслуживания создают необходимость максимального упрощения и удешевления конструкции агрегатов. При этом показатели надежности и автономности работы должны оставаться на высоком уровне. Снизить стоимость ВЭУ можно за счет совершенствования её конструкции, а также путем оптимизации рабочих режимов.

Целью данной работы является оптимизация режимов работы ВУЭ, направленная на максимально высокое использование энергии ветра.

Специфической особенностью ВЭУ является непостоянство развиваемой мощности во времени. Моментно-мощностную характеристику ВЭУ можно рассматривать в четырех ветровых зонах: 1-я зона охватывает диапазон изменения скорости от нулевой до начальной (минимальной скорости ветра, при которой ВЭУ начинает выдавать электроэнергию в сеть); 2-я зона охватывает диапазон изменения скорости ветра, при котором ВЭУ работает в режиме выработки переменной мощности; 3-я - это диапазон изменения скорости ветра от расчетной до максимальной рабочей скорости ветра (режим подержания выдачи в сеть номинальной мощности); 4-я - зона скоростей ветра, выше максимально допустимой рабочей [2].

Доля энергии в режиме переменной мощности (вторая зона) весьма значительна. Так при

среднегодовой скорости ветра 4 м/с ветроагрегат, развивающий номинальную мощность при 8 м/с, вырабатывает в режиме переменной мощности 60% энергии. С ростом среднегодовой скорости ветра эта доля снижается, но и при среднегодовой скорости ветра 6 м/с ветроагрегат во второй зоне вырабатывает 45% энергии [1].

Рассматриваемая ВЭУ имеет в своем составе горизонтально-осевой крыльчатый ветродвигатель с системой регулирования угла атаки лопастей, мультипликатор, синхронный генератор с постоянными магнитами (СГПМ) подключенный через управляемый выпрямитель(УВ) на активно индуктивную нагрузку.

Из вышесказанного следует, что режим переменной мощности является основным для ВЭУ. В работе исследуется алгоритм поиска оптимальной скорости вращения генератора ВЭУ во 2-й ветровой зоне. Для управления нелинейными системами, в особенности при недетерминированных воздействиях,

Во многих случаях целесообразно применение контроллеров, основанных на нечетких множествах.

Один из таких примеров приведен в [3]. В данном КНЛ производит поиск экстремума в режиме реального времени. Его задача, устанавливать скорость вращения генератора в зависимости от скорости ветра. КНЛ дает сигнал на изменение скорости вращения генератора ω_r и оценивает изменение мощности ВЭУ на выходе Ро (рис. 1). Поиск завершается достижением оптимального соотношения между скоростью вращения генератора выходной мощностью. увеличением (уменьшением) скорости соответственно $\omega_{\rm r}$ уменьшается (увеличивается) оцененное Ро. Если, с другой стороны, при приращении $\Delta \omega_{r}^{*}$ получаем ΔP_{o} *у*меньшение направление реверсируется. Приращение скорости уменьшается, когда поиск приближается к оптимальному значению. Структура КНЛ показана на рисунке 2; в таблице 1 КНЛ. Типичное представлена матрица правил правило выглядит так:

Если ΔP_o принадлежит PM (положительное среднее) и $L\Delta \omega_r^*$ из P (положительное), то $\Delta \omega_r^*$ PM.

66

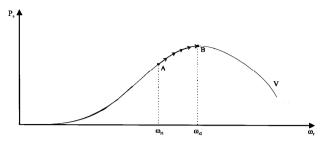


Рис. 1. Поиск оптимального значения ω_г

На рис. 3 показаны функции принадлежности, для малого приращения скорости $\Delta L \Delta \omega_r^*(a)$, для приращения выходной мощности ΔP_o , и для $\Delta \omega_r^*$.

Табл. 1. МАТРИЦА ПРАВИЛ КНЛ

$L\Delta\omega^*_{r(PU)}$ $\Delta P_{o(PU)}$	P	ZE	N
PVB	PVB	PVB	NVB
PB	PB	PVB	NB
PM	PM	PB	NM
PS	PS	PM	NS
ZE	ZE	ZE	ZE
NS	NS	NM	PS
NM	NM	NB	PM
NB	NB	NVB	PB
NVB	NVB	NVB	PVB

Термы функций ΔP_o и $\Delta \omega_r^*$ являются ассиметричными что придает им большую чувствительность.

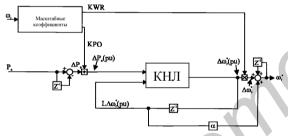


Рис. 2. Структурная схема КНЛ

Масштабные коэффициенты KPO и KWR, являются функциями скорости $\omega_{\rm r}$.

Преимущества применение нечеткого логического управления для поставленной задачи поиска скорости вращения оптимальной генератора Оно обеспечивает очевидны. адаптивно уменьшающийся размер шага в поиске, что приводит к быстрому нахождению оптимальной точки. В работе [4] был показан алгоритм стабилизации скорости генератора в зависимости от задаваемой быстроходности вертикально-осевого ветроколеса. Применение КНЛ позволило улучить работу систему счет более быстрого нахождения заданной скорости. Применение масштабных коэффициентов систему позволяет применять данную переходя к системам большей мощности.

- [1] Мустафаев Р.И. Гасанова Л.Г. Моментно-мощностные характеристики современных ветроэлектрических установок //Электротехника. 2009. №7. С. 53-58.
- [2] В.П. Харитонов, "Автономные ветроэлектрические установки," М.: ГНУ ВИЭСХ, 2006. 280с.
- [3] Petrenko, Y.N. Fuzzy logic and genetic algorithm technique for non-linear system of overhead crane / Y.N. Petrenko, S.E. Alavi // Computational Technologies in Electrical and Electronics Engineering (SIBIRCON), 2010 IEEE Region 8 International Conference, 11-15 July 2010. P. 848 851
- [4] Ю.Н. Петренко, С.А. Санкевич, Разработка алгоритма управления, обеспечивающего максимально высокую выходную мощность ветроэнерге-тической установки с накопителями энергии Уфа.: 2011, с. 60.
- [5] Кривцов В.С., Олейников А.М., Яковлев А.И. Неисчерпаемая энергия. Кн. 1. Ветроэлектрогенераторы – Харьков: ХАИ, 2003. – 400 с.
- [6] Кривцов В.С., Шефтер Я. И., Яковлев А.И. Ветроэнергетика – Харьков: ХАИ, 2004. – 519 с.

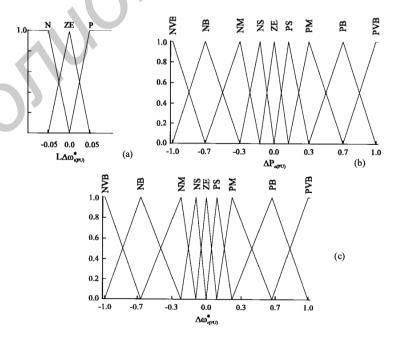


Рис. 3. Функции принадлежности КНЛ