# РАСПРЕДЕЛЕНИЕ ПАМЯТИ В НЕОГРАНИЧЕННОМ ЛИНЕЙНОМ АДРЕСНОМ ПРОСТРАНСТВЕ

#### Ивашенко В. П.

Кафедра интеллектуальных информационных технологий, Факультет информационных технологий и управления, Белорусский государственный университет информатики и радиоэлектроники Минск, Республика Беларусь

E-mail: ivashenko@bsuir.by

B статье рассматривается подход  $\kappa$  построению и реализация алгоритмов распределения неограниченно линейно адресуемой памяти для универсальных моделей решения задач

#### Введение

В технических системах, ориентированных на решение задач [1], особый интерес представляют универсальные модели [2], способные обеспечить интеграцию различных моделей решения задач [3]. В соответствии со схемой уровней управления [4] для систем управляемых знаниями, относящихся к системам ориентированным на решение задач, одной из ключевых задач управления устройствами является задача распределения памяти [5]. Ранее были рассмотрены программная модель и алгоритмы, обеспечивающие близкое к оптимальному решение этой задачи для ограниченного, конечного линейного адресного пространства (ЛАП) [6]. Однако, решение задач в рамках универсальных моделей требует эффективных механизмов работы с неограниченной памятью [7], при этом аналогичные задачи работы с объектами неограниченного размера актуальны для уровней управления данными и знаниями. Для реализации этих механизмов необходимо дать ответ на вопросы: «Какую платформу выбрать?», «Как кодировать участки памяти?», «Какие структуры следует использовать для доступа к участкам памяти, чтобы обеспечить их поиск и поддержать их изменение?», «Какова стратегия распределения памяти?».

#### I. ПРЕДСТАВЛЕНИЕ СВОБОДНЫХ УЧАСТКОВ НЕОГРАНИЧЕННОЙ ПАМЯТИ

Рассмотрим ответ на поставленные вопросы, исходя из известных свойств реализованных моделей распределения памяти для ограниченного ЛАП. Основными из этих свойств являются следующие:

- 1. стратегия «первый подходящий» является одной из близких к оптимальным стратегиям с точки зрения минимизации требований на размер памяти, включающей используемую для хранения данных и подверженную внешней фрагментации;
- 2. для стратегии «первый подходящий» временная сложность реализованных алгоритмов моделей распределения памяти оценивается как полилоглинейная;
- 3. для хранения структур, описывающих свободные участки памяти, используются сами

эти участки и дополнительный участок памяти ограниченного (неизменного в соответствии с размером адресуемой памяти) размера.

Предлагаемое представление свободных участков памяти ориентировано на сохранение этих свойств. С целью минимзации затрат памяти на дополнительные структуры данных, предлагаемое представление так же отталкивается от моделей наиболее экономичных в этом плане, а именно – от «систем близнецов» [5]. Недостатком «систем близнецов» является увеличение затрат (до двух раз) на размер памяти подверженной внутренней фрагментации.

Так как память имеет неограниченный размер, то и адреса ячеек памяти требуют неограниченного количества разрядов. С целью минимизации затрат на адаптацию используемых структур данных к возрастанию значащих разрядов адреса, для их хранения используются отдельные ячейки-регистры. Именно поэтому в качестве платформы реализации рассмотрена ранее предложенная модель обработки информации, которая как раз ориентирована на обеспечение решения подобных задач [7].

Структура свободных участков памяти, как это характерно для «систем близнецов» организуется в виде дерева, каждый полностью или частично свободный блок имеет размер равный суммарному размеру  $2^k-1$  ячеек памяти (рис. 2). Центральная ячейка любого полностью или частично свободного блока хранит служебную информацию, описывающего состояние блока и состояние ячеек блоков следующего уровня в дереве. В центральной ячейке для хранения этой информации используется до семи бит, соответствующих признакам: 1) занятости (отсутствия) младшего блока-потомка блока в дереве; 2) занятости (отсутствия) старшего блока-потомка блока в дереве; 3) блока как старшего блока-потомка у блока-родителя; 4) блока как текущего корневого блока в дереве; 5) младшего блока-потомка как блока со свободным блоком максимального размера; 6) блока, как не являющегося полностью свободным блоком, блоком-листом в дереве; 7) старшего блока-потомка как «блокафаворита», поиск и выделение свободного блока в котором осуществляются в первую очередь,

при прочих равных. Установка значения признака «блока-фаворита», соответствует реализуемой стратегии распределения памяти. Для распределения памяти «первый подходящий» с выделением блоков в направлении только одной стороны, достаточно установить значение признака одинаковым для всех блоков в дереве. Для распределения памяти с выделением блоков с двух сторон (см. рис. 1) можно чередовать значение этого признака при подъёме от предыдущего корневого блока дерева к новому текущему корневому блоку дерева, при этом значение этого признака в новых блоках поддерева нового блока-потомка корневого блока дерева совпадает со значением этого признака в корневом блоке дерева.

## II. Выделение и высвобождение участков неограченной памяти

Задачи выделения свободного блока и высвобождения блока памяти по указанному адресу заданных размеров в неограниченном ЛАП сведены к следующим подзадачам: 1) вычисление размера блока-родителя и блока-потомка в дереве; 2) вычисление адреса ячейки блокародителя; 3) вычисление адреса младшего или старшего блока-потомка; 4) вычисление адреса и размера корневого блока; 5) вычисление «блокафаворита» у указанного блока; 6) вычисление адреса подходяшего по размеру блока в поддереве; 7) сравнение размеров максимальных блоков в поддеревьях младщего и старшего потомков; 8) создание нового корневого блока и блокапотомка. Каждая из этих задач решается соответствующим алгоритмом, описанном в виде процедуры на языке выбранной платформы реализации. Кроме структур, описывающих состояние участков памяти, используются дополнительные регистры (в количестве не менее 22-х), которые хранят следующую информацию: адрес выполняемой команды, адреса вызовов и возвратов из процедур, параметры процедур распределения памяти – размер распределяемого блока, адрес выделенного блока, размер блока в дереве участков памяти, адрес ячейки блока в дереве участков памяти, результаты процедур, их параметры и управляющие флаги, включающие значения признаков свободного блока, старшего блока-потомка родителя, «блока-фаворита», блока максимального размера, корневого блока и т.д.

Временная сложность реализованных алгоритмов выделения и высвобождения блоков па-

мяти может быть выражена как  $O(\ln^3(2^n)*f(n))$ , где  $2^n$  — количество бит распределённой памяти (количество используемых значащих разрядов адресных регистров не превышает n), f(n) — время доступа к ячейке памяти по адресу. Пространственнная сложность реализованных алгоритмов —  $O(\ln(2^n))$ . Перерасход памяти из-за внешней фрагментации, выраженный размером фактически используемой памяти: O(m\*ln(m)), где m — максимальный размер памяти, занятой данными.




Рис. 1 – История изменений состояний памяти в неограниченном ЛАП в процессе её распределения

#### Заключение

Алгоритмы и демонстрационный пример (рис. 1) модели распределения неограниченной линейно адресуемой памяти реализованы средствами JavaScript (https://bitbucket.org/version/openjsvvm/).

### Список литературы

- Wolfram, S. Jeopardy, IBM, and Wolfram|Alpha. Mode of access: http://blog.stephenwolfram.com/2011/01/jeo pardy-ibm-and-wolframalpha/ Date of access: 17 09 2017
- Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, Inc. 2002. p. 1197.
- Luger, G. Stubblefield, William (2004), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720.
- Ивашенко, В. П. Операции управления массивами данных в линейно адресуемой памяти / В. П. Ивашенко, С. В. Синцов // Доклады БГУИР, №10, – Минск, 2016. – С. 86–93.
- 5. Кнут, Д. Искусство программирования. Том 3. Сортировка и поиск. М.: Вильямс, 2014. 832 с.
- 6. Ивашенко, В. П. Алгоритмы полилогарифмической временной и логарифмической пространственной сложности для системы динамического распределения линейно адресуемой памяти с однородным доступом к данным / В. П. Ивашенко // Карповские научные чтения : сб. науч. ст. Минск, 2012. Вып. 6, ч. 1. С. 196–201.
- Ивашенко, В. П. Модели обработки информации и программные средства для универсальных моделей решения задач / В. П. Ивашенко // Информационные технологии и системы 2017 (ИТС 2017): материалы междунар. науч. конф. (Республика Беларусь, Минск, 25 октября 2017 года) / редкол.: Л. Ю. Шилин [и др.]. Минск: БГУИР, 2017. С. 106–107.

| <br>00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |  |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--|
| 1      | w  | 1  | 7  | 1  | 3  | 1  | 15 | 1  | 3  | 1  | 7  | 1  | 3  | 1  |    |  |
|        | 3  |    | 7  |    | 3  |    | 15 |    | 3  |    | 7  |    | 3  |    |    |  |
|        |    |    | 7  |    |    |    | 15 |    |    |    | 7  |    |    |    |    |  |
|        |    |    |    |    |    |    | 15 |    |    |    |    |    |    |    |    |  |

Рис. 2 – Иерархия кодирования блоков соответствующих размеров в неограниченной памяти