The number of integer polynomials whose discriminants are divided by a large prime power

Marina A. Kalugina, V. I. Bernik

Let

$$
\begin{equation*}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{j} \in \mathbb{Z}, 0 \leq j \leq n, \tag{1}
\end{equation*}
$$

is an integer polynomial of degree $\operatorname{deg} P=n$ (this means $a_{n} \neq 0$), the height $H=H(P)=$ $\max _{0 \leq j \leq n}\left|a_{j}\right| \leq Q$ and roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.

Then the discriminant $D(P)$ of the polynomial (1) is equal to

$$
\begin{equation*}
D(P)=a_{n}^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \tag{2}
\end{equation*}
$$

The expression (2) is often taken as a definition of the discriminant.
For $1 \leq v \leq n-1$ and a natural number $Q>1$ introduce a class $\mathcal{P}_{n}(Q, v)$ of polynomials

$$
\begin{equation*}
\mathcal{P}_{n}(Q, v)=\left\{P(x) \mid \operatorname{deg} P \leq n, 1 \leq D(P)<Q^{2 n-2-2 v}\right\} . \tag{3}
\end{equation*}
$$

Denote $\# \mathcal{P}_{n}(Q, v)$ the number of elements of the finite set $\mathcal{P}_{n}(Q, v)$. In [1] was proven that

$$
\begin{equation*}
\# \mathcal{P}_{n}(Q, v)>c_{1}(n) Q^{n+1-\frac{n+2}{n} v} \tag{4}
\end{equation*}
$$

Estimates from above for the $\# \mathcal{P}_{n}(Q, v)$ were received in $[2]$ for $n=2$ and $n=3$.
Let $|a|_{p}-p$-adic norm of a natural number a. Similarly to (3) define a class of polynomials

$$
\begin{equation*}
\mathcal{P}_{n}^{*}(Q, v)=\left\{P(w)\left|\operatorname{deg} P \leq n,|D(P)|_{p}<Q^{-2 v}\right\} .\right. \tag{5}
\end{equation*}
$$

Theorem 1. Let $2 \leq n \leq 4$ and $\varepsilon>0$. Then

$$
\begin{equation*}
\# \mathcal{P}_{n}^{*}(Q, v)<Q^{n+1-\frac{n+2}{n} v+\varepsilon} . \tag{6}
\end{equation*}
$$

References

1. V. Beresnevich, V. Bernik, F. Götze, The distribution of close conjugate algebraicnumbers, Compos. Math. 146 (2010), no. 5, 1165-1179.
2. D. Koleda, On an estimate from above of the number of third-degree integer polynomials with a given boundary of discriminants,Vestsi NAS Belarusi. Ser. fiz.-mat. navuk (2010),no. 3, 10-16 (in Russian).

Contact information

Marina A. Kalugina

Faculty of Computer Systems and Networks, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
Email address: m.kalugina@bsuir.by

V. I. Bernik

Department of Number Theory, Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Belarus
Email address: bernik.vasili@mail.ru
Key words and phrases. Integer polynomials, the discriminant of a polynomial, estimates from above for the number of polynomials, p-adic norm, prime power

