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Panel (or longitudinal) data describes a set of objects which are observed during certain period of time, so they
consist of repeated observations of the same objects in sequential time periods. The following examples of panel
data can be mentioned: annual household studies, monthly performance indicators for economic institutions and
many others. In this study we provide another approach to forecasting cross-sectional data based on state space
models together with Kalman filtering procedure.

Introduction

In economic researches regression models are
widely used within large number of applications [1].
Regression models for panel data allow usage of two
indices to describe the data:

yi,t = α+Xi,tβ + xi,t,

where i defines object index (household, company,
country, etc), t denotes timestamp of an
observation, α is an unknown intercept, β is a
(n × 1)-vector of unknown parameters, Xi,t is a
known matrix denoting factors which influence
observations. Uncontrollable factors xi,t are
modeled with the following equation:

xi,t = µi + εi,t,

where µi is an unobservable individual effect of
i−th object, εi,t is a random variable which defines
random uncontrollable effect.

Statistical analysis of panel data can be
carried out using state space models. In order
to express panel data in a state space form
it is necessary to introduce one more index i
for state parameters vector xt in classic state
space model formulation. This resutls in xi,t,
where t = 1, · · · , Ti, i = 1, · · · ,K, t denotes
timestamp, i denotes object index. It means that
the mathematical model for panel data is a random
field {xi,t}, t = 1, Ti, i = 1,K.

Based on linear state space models [2] we
express panel data in a state space form:

xi,t = Fxi,t−1 + ω1,t,

yi,t = Hxi,t + ω2,t,

where xi,t is an unobserved state of i-th object at
moment t, yi,t is an observation for the object at the
same moment. In common case xi,t ∈ Rn1 , yi,t ∈ Rn2 ,
{ω1,t} and {ω2,t} are sequences of i.i.d. random
variables ω1,t, ω2,t ∼ N(0, Q), xi,0 ∼ N(µ, P ). The
parameters of the model are F,H, µ, P . And the
problem is to estimate future observations xi,t+h,
yi,t+h based on previous observations yi,s, s =
1, · · · , t, h > 0.

I. Kalman Filter

Kalman Filter [3] allows to build optimal in
mean-squared sense forecasts if they are introduced
in linear state space form. Let us consider the
following

xti,t = E{xi,t|yti,0},

P ti,t1,t2 = E{(xi,t1 − xti,t1)(xi,t2 − xti,t2)|yti,0},

where yti,0 = {yi,j , j = 1, · · · , t}.
Kalman Filter can be expressed using the

following equations [4]

xti,t = xt−1
i,t +Ki,t(yi,t −Hi,tx

t−1
i,t , (1)

P ti,t = (1−Ki,tHi,t)P
t−1
i,t , (2)

Ki,t = P t−1
i,t HT

i,t(Hi,tP
t−1
i,t HT

i,t +R)−1, (3)

where i = 1,K, t = 1, Ti, xi,0 = µ, P 0
i,0 = P .

In order to compute forecasts for xi,t for h lags
forward equations (1) − (3) are used with initial
values xTi,t, PTi,t instead of x0

i,0, P 0
i,0.

In order to predict observed values yi,t for h
future lags we provide the following procedure:

yi,t+h = E{yi,t+h|yTi,0},

BTi,T+h = E{(yi,T+h − yTi,T+h)|yTi,0},

Using Kalman Filter (1) − (3) the following
equations for forecasting statistics are provided:

xTi,T+h = FxTi,T+h−1, (4)

yTi,T+h = Hix
T
i,T+h, (5)

PTi,T+h = FPTi,T+h−1F
T +Q, (6)

BTi,T+h = HiP
T
i,T+hHi +R. (7)
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II. Panel data in linear state space form

Classic linear mixed regression model in a
compact form can be expressed in the following way:

y = Xβ + Zγ + ε, E{γ, ε)} = (0, 0),

cov(γ, ε) =

[
Q 0
0 R

]

where y is observed variable with the following
expectation and covariance E{y} = XB,
cov(y, y) = ZQZT +R. Matrices X and Z describe
determined and stochastic effects in observations
respectively. For panel data modification of a linear
mixed regression model observations for i-th object
yi = (yi,1|, · · · , yi,Ti)T , i = 1,K are aggragated for
t = 1, Ti which results in the following model:

yi = Xiβ + Ziγi + εi,

γi ∼ N(0, G),

εi = (εi,1, εi,Ti)
T ∼ N(0,Σ),

which leads to yi ∼ N(Xiβ, ZiGZ
T
i + Σi).

One of the possible ways of expressing
longitudinal modification of mixed regression model
in state space form can be expressing observations
yi,t as a single vector of higher dimensionality,
then the state and observation equations can be
formulated as following

yi,t = xTi,tβi,t + ZTi,tγ + εi,t, (8)

βi,t = βi,t−1, (9)
where εi,t ∼ N(0, σ2).

Then we apply Kalman filtering procedure
(1) − (3) to the panel data model (8) − (9) and
finally construct forecasting statistics (4)− (7).

III. Computational experiments

Let us consider the case described with the
model (8) − (9). Let the observation vector be
a constant vector with additive errors defined by
AR(1) process:

yi,t = βi + εi,

εi ∼ N(0,Σt),

Σt(i, j) =
σ2φ|i−j|

1− φ2
, |φ| < 1.

One of possible state space models for this case
can be the following:

yi,t = βi + εt,

εt = φεt + ωt, ωt ∼ N(0, σ2)

with the initial conditions εt = N(0, σ2

1−φ2 ).
The task is to estimate model parameters

which can be non-trivial due to nonlinear
relationships between parameters. After
parameters’ estimates are built they can be used to
construct forecasts xi,t+h, yi,t+h. In order to avoid
this problem we construct another state space form

yi,t = µ+ βi + εi,

xi,t =

(
εt
βi

)
=

[
φ 1
0 1

](
εt−1

βi

)
+

(
ωt
0

)
,

yi,t = (1, 1)xi,t,

ωt ∼ N(0,Ω),

with the initial condition (ε0, βi)
T ∼ N(0, G), where

G =

[
σ2

1−φ2 0

0 0

]

Ω =

[
σ2 0
0 0

]
.

Conclusion

Finally this results in linear state space model
and we can apply Kalman filtering procedure (1)−
(7). For computational experiments we generated
two-dimensional time series according to model
described above. The experients were carried out
with the following parameters: µ = 0, σ2 =
1, φ = 0.5, βi = 1. To construct forecasting
statistics equations (4)− (7) were used. Forecasting
horizon with h = 10 was used. We observed
mean absolute percentage error below 2.1% which
indicates possibility of modeling panel data using
the described approach.
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