ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ СЛОЖНЫХ ПРОМЫШЛЕННЫХ СИСТЕМ

Петрашкевич Н. И.

Кафедра систем управления

Научный руководитель: Лукьянец С. В., профессор кафедры СУ, канд. техн. наук, профессор e-mail: nnaaddii@gmail.com

Аннотация - с помощью языка имитационного моделирования **GPSS** проведено исследование производственного участка механообработки. Рассмотрены различные компоновки технологического оборудования и режимы его функционирования. Результаты компьютерного моделирования использованы при постановке лабораторной работы по соответствующему курсу.

Ключевые слова: имитационное моделирование, механообработка, загрузка оборудования, количество изготовленных деталей.

Механообработка является одной из разновидностей сложных систем, и ее исследование на сегодняшний день актуально.

Участок механообработки состоит из склада (SKL) общего под заготовки и изготовленные детали для различных партий деталей, общего обрабатывающего модуля (ОМО) для обработки заготовок на первой технологической операции, различных обрабатывающих модулей (ОМА и ОМВ) для партий деталей соответственно типа A и B на второй технологической операции, транспортного манипулятора (TRM).

Рассматриваются три типа компоновочных схем — с использованием одного, двух или трех транспортных роботов. Размещение заготовок на складе подчиняется равномерному закону распределения и составляет (2 ± 1) мин. Транспортный манипулятор и обрабатывающие модули имеют производственный цикл, равный (4 ± 2) мин и (4 ± 1) мин соответственно.

Промоделирована работа участка в течение двух смен при коэффициенте использования рабочего времени 0,9. За единицу модельного времени принята 1 мин. Учтена возможность выхода из строя обрабатывающих модулей. Пусть для ОМО неисправность возникает один раз в (300±180) мин, для ОМА и ОМВ — (180±60) мин. Устранение неисправности занимает 60 мин.

При исследовании рассмотрена организация производства с замкнутой и разомкнутой структурами.

Особенностью замкнутой структуры является поступление заготовок на вход системы только после завершения обработки деталей обеих партий по всему технологическому процессу.

Результаты моделирования замкнутого участка для различных структурно-компоновочных схем представлены в табл. 1.

Анализ результатов показывает, что применение нескольких транспортных манипуляторов не приводит к существенному увеличению количества

деталей, выпускаемых лишь разгружает транспортные роботы. Для повышения производительности необходимо участка использовать либо более быстродействующий транспорт, либо обрабатывающие модули с большей производительностью. Однако к значительному росту выпущенных деталей это не приведет.

Этого недостатка лишена система с разомкнутой организацией производства. При этом заготовки на вход поступают через определенный интервал времени, и вход системы не зависит от состояния ее выхода.

При моделировании исследованы различные типы структурно-компоновочных схем и зависимости основных характеристик системы от интенсивности поступления заготовок. Еще одним важным требованием к системе является контроль за наличием очередей. Результаты исследования так же представлены в табл. 1.

Табл. 1. Зависимость основных показателей качества замкнутой и разомкнутой систем от количества транспортных роботов

Число TRM, шт.	Загрузка ОМО, %		Максимальная загрузка TRM, %		Количество изготовленных деталей, шт.	
	зам.	раз.	зам.	раз.	зам.	раз.
1	18	31,3	55,6	89,3	38	64
2	18,2	36,8	39,6	76,1	40	81
3	19,8	44,5	20,4	42,4	42	93

Исследование показало, что для участка с разомкнутой структурой наиболее высокую производительность будет иметь структурно-компоновочная схема с тремя транспортными роботами и интервалом поступления заготовок (18±3) мин. Здесь возможен выпуск наибольшего количества деталей за смену, наибольшая загрузка оборудования и нахождение очередей в пределах допустимого интервала.

Таким образом, при планировании производства для достижения максимального экономического эффекта рекомендуется применять разомкнутую систему со структурно-компоновочной схемой третьего типа (с тремя TRM). Использование разомкнутой структуры участка позволит получить повышение производительности более чем в два раза по сравнению с замкнутой.

Результаты данного исследования положены в основу при разработке лабораторной работы по дисциплине «Моделирование в проектировании сложных систем».

- [1] Кудрявцев, Е. М. GPSS World. Основы имитационного моделирования различных систем / Е. М. Кудрявцев. М.: ДМК Пресс, 2004. 320 с.
- [2] Лукьянец, С. В. Моделирование гибких производственных систем и роботизированных комплексов: Монография / С. В. Лукьянец, А. П. Пашкевич. – Минск: БГУИР, 2005. – 232 с.