03

Отражение света от слоя гиперболического метаматериала

© Н.С. Петров¹, С.Н. Курилкина², А.Б. Зимин³, В.Н. Белый²

 ¹ Институт повышения квалификации по новым направлениям развития техники, технологий и экономики Белорусского национального технического университета,
 ²20107 Минск, Беларусь
 ² Институт физики им. Б.И. Степанова НАН Беларуси,
 ²20072 Минск, Беларусь
 ³ Белорусский государственный университет информатики и радиоэлектроники,
 ²20013 Минск, Беларусь
 e-mail: s.kurilkina@ifanbel.bas-net.by

Поступила в редакцию 25.06.2019 г. В окончательной редакции 25.06.2019 г. Принята к публикации 12.07.2019 г.

> Исследованы особенности отражения плоской эллиптически поляризованной электромагнитной волны, падающей из изотропной непоглощающей среды на плоско-параллельный слой гиперболического метаматериала (ГММ), оптическая ось которого параллельна границе раздела, а диагональные значения диэлектрической проницаемости меньше диэлектрической проницаемости изотропной среды. В зависимости от угла падения и угла между плоскостью падения и оптической осью ГММ возможны режимы, когда от границы раздела затухает или обыкновенная волна, или необыкновенная, или обе волны, причем в последнем случае при некоторых значениях углов затухание может быть неэкспоненциальным. Для этих трех режимов выполнены численные расчеты коэффициента отражения от слоя наноструктуры ITO/Ag. При изменении поляризации падающей волны энергетический коэффициент отражения изменяется от минимального до максимального значения, которые зависят от толщины слоя. В отличие от обычных анизотропных сред во всех случаях максимальное значение коэффициента отражения при увеличении толщины слоя стремится к единице. Когда амплитуда обыкновенной или необыкновенной волны не убывает от границы раздела, минимальный коэффициент отражения при увеличении толщины слоя вследствие интерференции периодически обращается в нуль. В случае, когда обе волны затухают, причем при некоторых условиях падения неэкспоненциально, минимальный коэффициент отражения обращается в нуль при некоторой толщине слоя, а затем стремится к единице.

> Ключевые слова: метаматериал, анизотропная среда, однородная волна, неоднородная волна, отражение света.

DOI: 10.21883/OS.2019.12.48691.225-19

Введение

В настоящее время внимание многих исследователей привлекают метаматериалы (ММ) — искусственно синтезированные среды, содержащие, как правило, металлические нановключения, упорядоченно внедренные в диэлектрическую матрицу и проявляющие электромагнитные свойства, не характерные для обычных изотропных и анизотропных сред [1,2]. Данный интерес связан с перспективами использования таких материалов для управления параметрами световых пучков, получения изображений с субволновым разрешением [3,4], в нанолитографии и т.д. Описывающие данные среды усредненные (эффективные) проницаемости (диэлектрическая ε и магнитная μ) отличаются от таковых для их компонентов и существенно зависят от геометрических размеров нановключений и их взаимного расположения, что обусловливает возможность создания метаматериалов с заранее заданными уникальными оптическими свойствами [5].

Одним из видов ММ являются гиперболические метаматериалы (ГММ), для которых предполагается $\mu \approx 1$, а описывающий их одноосный тензор диэлектрической проницаемости $\varepsilon = \text{diag}\{\varepsilon_o, \varepsilon_o, \varepsilon_e\}$ имеет главные значения проницаемостей (поперечной ε_o и продольной ε_e), различающиеся знаком, следствием чего является появление гиперболической дисперсии [6]. Большинство практических применений ГММ (в частности, в сенсорике, ближнепольной микроскопии, в системах получения изображений) связано с особенностями формируемых в них электромагнитных волн, среди которых особое место занимают неоднородные волны, у которых плоскости равных фаз и равных амплитуд не параллельны между собой. Такие волны возникают в прозрачных средах при полном отражении света, при наклонном падении излучения в поглощающих (усиливающих) материалах. В работе [7] показана возможность существования на границе гиперболического метаматериала неоднородных волн особого типа, векторная амплитуда которых изменяется с глубиной проникновения волны в кристалл не по экспоненциальному, а более сложному закону.

Рис. 1. Схема рассматриваемой структуры (a) и ее представление в приближении эффективной среды (b). с — единичный вектор вдоль оптической оси, b, q, s — тройка единичных векторов, где q — вектор, ортогональный границе раздела, (c, q) — главная плоскость анизотропной среды, (b, q) — плоскость падения световой волны, повернутая относительно главной плоскости на угол ρ .

В работе [8] рассмотрен случай отражения света слоем ГММ в условиях существования в нем этих особых неоднородных волн. В настоящей работе анализируется более общий случай отражения света от слоя гиперболического метаматериала в условиях слабого поглощения, когда в нем одновременно могут формироваться как однородная, так и неоднородная волны.

Особенности отражения света слоем гиперболического метаматериала

Пусть изотропная среда с диэлектрической проницаемостью ε_1 граничит со слоем гиперболического метаматериала, характеризуемого тензором диэлектрической проницаемости $\varepsilon = \text{diag}\{\varepsilon_o, \varepsilon_o, \varepsilon_e\} = \varepsilon_o + \delta \mathbf{c} \cdot \mathbf{c}$, где $\delta = \varepsilon_e - \varepsilon_o$, \mathbf{c} — единичный вектор вдоль оптической оси (точка между векторами обозначает их диадное произведение). В дальнейшем будем использовать систему координат, ось *z* которой направлена внутрь ГММ, а ее начало совпадает с входной гранью слоя (рис. 1, *a*).

Пусть из изотропного диэлектрика на границу раздела с плоскопараллельным слоем ГММ падает однородная

эллиптически поляризованная электромагнитная волна. При решении поставленной задачи будем исходить из уравнений Максвелла

$$\operatorname{rot} \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0, \quad \operatorname{rot} \mathbf{H} - \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} = 0, \quad (1)$$

где $\mathbf{D} = \varepsilon \mathbf{E}$, $\mathbf{B} \cong \mathbf{H}$. Представим векторы электрической напряженности плоских волн, падающей из изотропного диэлектрика (\mathbf{E}_1) и отраженной (\mathbf{E}_1') слоем ГММ в следующем виде:

$$\mathbf{E}_1 = (A_1 s + B_1[\mathbf{n}_1 \mathbf{s}]) \exp(i\varphi_1)$$

= $(A_1 s + B_1/n_1(-\xi \mathbf{q} + \eta_1 \mathbf{b})) \exp(i\varphi_1),$ (2a)

$$\mathbf{E}'_{1} = (A'_{1}s + B'_{1}[\mathbf{n}'_{1}s])) \exp(i\varphi'_{1})$$

= $(A'_{1}s + B'_{1}/n_{1}(-\xi \mathbf{q} - \eta_{1}\mathbf{b})) \exp(i\varphi_{1}).$ (2b)

Здесь фазовый множитель $e^{-i\omega t}$ опущен; $A_1(B_1)$ и $A_1'(B_1')$ — соответственно амплитуды волн с векторами поляризации, ориентированными перпендикулярно и параллельно плоскости падения, $\varphi_1 = k \mathbf{m}_1 \mathbf{r}$, $\varphi_1' = k \mathbf{m}_1' \mathbf{r}$ (\mathbf{r} — радиус-вектор), \mathbf{m}_1 и \mathbf{m}_1' — так называемые векторы рефракции этих волн, представимые в виде

$$\mathbf{m}_1 = n_1 \mathbf{n}_1 = \xi \mathbf{b} + \eta_1 \mathbf{q}, \quad \mathbf{m}'_1 = n_1 \mathbf{n}'_1 = \xi \mathbf{b} - \eta_1 \mathbf{q}. \quad (3)$$

При этом для них выполняются соотношения

$$\mathbf{m}_1^2 = (\mathbf{m}_1')^2 = n_1^2 = \varepsilon_1 = \xi^2 + \eta_1^2,$$
 (4)

где $n_1 = \sqrt{\varepsilon_1}$ — показатель преломления изотропной среды, из которой падает излучение, \mathbf{n}_1 и \mathbf{n}'_1 — единичные векторы в направлении распространения фазы волны, $\xi = n_1 \sin \alpha$, $\eta_1 = n_1 \cos \alpha$, α — угол падения, изменяющийся в интервале $0 \le \alpha \le \pi/2$ ($0 \le \xi^2 \le \varepsilon_1$), **b**, **q** и **s** — тройка взаимно перпендикулярных ортов (**b** — вдоль границы раздела сред, **q** — нормаль к границе ГММ, направленная вглубь слоя, **s** — нормаль к плоскости падения ($s = [\mathbf{bq}]$) (рис. 1, *b*).

Векторы напряженности магнитного поля **H** также определяются из уравнений (1), откуда для случая плоских волн следует $\mathbf{H} = [\mathbf{mE}]$. Тогда

$$\mathbf{H}_{1} = (A_{1}[\mathbf{m}_{1}\mathbf{s}] - n_{1}B_{1}\mathbf{s}) \exp(i\varphi_{1})$$
$$= (A_{1}(-\xi\mathbf{q} + \eta_{1}\mathbf{b}) - n_{1}B_{1}\mathbf{s}) \exp(i\varphi_{1}), \qquad (5a)$$

$$\mathbf{H}'_{1} = (A'_{1}[\mathbf{m}'_{1}\mathbf{s}] - n_{1}B'_{1}\mathbf{s})\exp(i\varphi'_{1})$$

= $(A'_{1}(-\xi\mathbf{q} - \eta_{1}\mathbf{b}) - n_{1}B'_{1}\mathbf{s})\exp(i\varphi_{1}).$ (5b)

Векторы электрического и магнитного поля волны, прошедшей анизотропный слой, представим в виде, аналогичном выражениям для $E_1(E'_1)$ и $H_1(H'_1)$, а именно

$$\mathbf{E}_2 = (A_2 s + B_2[n_2 \mathbf{s}]) \exp(i\varphi_2)$$
$$= (A_2 s + B_2/n_2(-\xi \mathbf{q} + \eta_2 \mathbf{b})) \exp(i\varphi_2), \qquad (6a)$$

$$\mathbf{H}_2 = (A_2[\mathbf{m}_2 s] - n_2 B_2 \mathbf{s}) \exp(i\varphi_2)$$
$$= (A_2(-\xi \mathbf{q} + \eta_2 \mathbf{b}) + n_2 B_2 \mathbf{s}) \exp(i\varphi_2), \qquad (6b)$$

где $\mathbf{m}_2 = \xi \mathbf{b} + \eta_2 \mathbf{q}$, $\eta_2 = \sqrt{\mathbf{m}_2^2 - \xi^2}$, $(\mathbf{m}_2^2 = \varepsilon_2 = n_2^2)$, $\varphi_2 = k \mathbf{m}_2 \mathbf{r}$, n_2 — показатель преломления изотропной среды, граничащей со слоем гиперболического метаматериала с другой его стороны. Далее принято $n_2 = n_1$, $(\eta_2 = \eta_1)$, т.е. окружающие анизотропный слой изотропные среды одинаковы.

В слое гиперболического метаматериала распространяются две пары встречных волн, для которых векторы электрической и магнитной напряженностей получаются как решения уравнений Максвелла и представляются следующим образом:

$$\mathbf{E} = C_1 \mathbf{E}_o \exp(ik\mathbf{m}_o \mathbf{r}) + C'_1 \mathbf{E}'_0 \exp(ik\mathbf{m}'_0 \mathbf{r}) + C_2 \mathbf{E}_e \exp(ik\mathbf{m}_e \mathbf{r}) + C'_2 \mathbf{E}'_e \exp(ik\mathbf{m}'_e \mathbf{r}), \qquad (7a)$$

$$\mathbf{H} = C_1 \mathbf{H}_o \exp(ik\mathbf{m}_o \mathbf{r}) + C_1' \mathbf{H}_o' \exp(ik\mathbf{m}_o' \mathbf{r})$$

$$+C_{2}\mathbf{H}_{e}\exp(ik\mathbf{m}_{e}\mathbf{r})+C_{2}'\mathbf{H}_{e}'\exp(ik\mathbf{m}_{e}'\mathbf{r}),\qquad(7b)$$

$$\mathbf{E}_{o} = -u\gamma_{1}\mathbf{s} + v\gamma_{1}\mathbf{b} + i\xi v\mathbf{q},$$

$$\mathbf{E}_{o}' = u\gamma_{1}\mathbf{s} - v\gamma_{1}\mathbf{b} + i\xi v\mathbf{q},$$
 (8a)

$$\mathbf{H}_{o}=iarphiarepsilon_{o}\mathbf{s}-iuarphi_{1}^{2}\mathbf{b}+uarepsilon\gamma_{1}\mathbf{q}=[\mathbf{m}_{o}\mathbf{E}_{o}],$$

$$\mathbf{H}'_{o} = i\upsilon\varepsilon_{o}\mathbf{s} - iu\gamma_{1}^{2}\mathbf{b} - u\xi\gamma_{1}\mathbf{q} = [\mathbf{m}'_{o}\mathbf{E}'_{o}], \qquad (8b)$$
$$\mathbf{E}_{o} = u\gamma_{c}^{2}\mathbf{b} - v\varepsilon_{c}\mathbf{s} + iu\xi\gamma_{2}\mathbf{q}.$$

$$\mathbf{E}_{e}^{\prime} = u\gamma_{1}^{2}\mathbf{b} - v\varepsilon_{o}\mathbf{s} - iu\xi\gamma_{2}\mathbf{q},$$

$$\mathbf{E}_{e}^{\prime} = u\gamma_{1}^{2}\mathbf{b} - v\varepsilon_{o}\mathbf{s} - iu\xi\gamma_{2}\mathbf{q},$$
(8c)

$$\mathbf{H}_{e} = \varepsilon_{o}(-iv\gamma_{2}\mathbf{b} + iu\gamma_{2}\mathbf{s} + v\xi\mathbf{q}),$$

$$\mathbf{H}'_{e} = \varepsilon_{o}(iv\gamma_{2}\mathbf{b} - iu\gamma_{2}\mathbf{s} + v\xi\mathbf{q}).$$
(8d)

Здесь $\mathbf{m}_o = \xi \mathbf{b} + i\gamma_o \mathbf{q}, \quad m'_o = \xi \mathbf{b} - i\gamma_o \mathbf{q}, \quad \gamma_1 = \gamma_o =$ = $\sqrt{\xi^2 - \varepsilon_o}, \quad (\mathbf{m}_o^2 = \varepsilon_o), \quad \mathbf{m}_e = \xi \mathbf{b} + i\gamma_e \mathbf{q}, \quad \mathbf{m}'_e = \xi \mathbf{b} - i\gamma_e \mathbf{q},$ $\gamma_2 = \gamma_e = \sqrt{\xi^2 (\varepsilon_0 \sin^2 \rho + \varepsilon_e \cos^2 \rho)/\varepsilon_0 - \varepsilon_e} =$ = $\sqrt{\xi^2 - \varepsilon_0 + (\varepsilon_e - \varepsilon_o)(\xi^2 \cos^2 \rho/\varepsilon_o - 1)}, \quad \mathbf{c} = \cos \rho \mathbf{b} +$ + $\sin \rho \mathbf{s} = u \mathbf{b} + v \mathbf{s}, \quad k = \omega/c.$

Отметим, что при $\xi^2 \cos^2 \rho / \varepsilon_o = 1$ двойное лучепреломление в среде отсутствует, и возникает особая волна, проанализированная ранее в [8]. В этом случае для нахождения решений вместо системы (8) следует использовать результаты [8]. В неособом случае из стандартных граничных условий (равенства на границе раздела всех компонент векторов магнитной напряженности и тангенциальных **b** компонент векторов электрической напряженности) получается система уравнений для нахождения восьми скалярных амплитуд $A'_1(B'_1)$, $C_1(C'_1)$, $C_2(C'_2)$, A_2 , B_2 волн (2a), (2b), (5a), (5b), (6a), (6b), (7a), (7b):

$$\begin{split} \eta_1(A_1 - A_1') + iu\gamma_1^2(C_1 + C_1') + iv\gamma_2\varepsilon_o(C_2 - C_2') &= 0, \\ A_1 + A_1' + u\gamma_1(C_1 - C_1') + v\varepsilon_o(C_2 + C_2') &= 0, \\ n_1(B_1 + B_1') + iv\varepsilon_o(C_1 + C_1') + iu\gamma_2\varepsilon_o(C_2 - C_2') &= 0, \end{split}$$

$$\begin{split} \eta_1/n_1(-B_1+B_1') + v\gamma_1(C_1-C_1') + u\gamma_1^2(C_2+C_2') &= 0, \\ \eta_1A_2\exp(i\psi) + iu\gamma_1^2(C_{1\vartheta}+C_{1\vartheta}') + iv\gamma_2\varepsilon_o(C_{2\vartheta}-C_{2\vartheta}') &= 0, \\ A_2\exp(i\psi) + u\gamma_1(C_{1\vartheta}-C_{1\vartheta}') + v\varepsilon_o(C_{2\vartheta}+C_{2\vartheta}') &= 0, \\ n_1B_2\exp(i\psi) + iv\varepsilon_o(C_{1\vartheta}+C_{1\vartheta}') + iu\gamma_2\varepsilon_o(C_{2\vartheta}-C_{2\vartheta}') &= 0, \\ -\eta_1/n_1B_2\exp(i\psi) + v\gamma_1(C_{1\vartheta}-C_{1\vartheta}') + u\gamma_1^2(C_{2\vartheta}+C_{2\vartheta}') &= 0. \\ (9) \\ 3\text{десь } \xi &= kh, h - \text{толщина слоя, } \vartheta_1 &= \gamma_1\xi', \vartheta_2 &= \gamma_2\xi', \\ \psi &= \eta_1\xi', n &= \sqrt{\varepsilon_o}, C_{1\vartheta} &= C_1\exp(-\vartheta_1), C_{2\vartheta} &= C_2\exp(\vartheta_2), \\ C_{1\vartheta}' &= C_1'\exp(\vartheta_1), C_{2\vartheta}' &= C_2'\exp(\vartheta_2). \\ \text{Аналитическое решение данной системы уравнений, определяющей век-$$

понне данной системы уравнения, определяющей век торы электрической и магнитной напряженностей волн, отраженных слоем ГММ и прошедших через него, и, следовательно, энергетические коэффициенты отражения и пропускания, достаточно громоздко. Однако эта система может быть решена численными методами для произвольной, в общем случае эллиптической, поляризации падающего света.

Результаты расчетов коэффициента отражения от слоя гиперболического метаматериала

Пусть гиперболический метаматериал сформирован на основе слоисто-периодической металлодиэлектрической структуры. В приближении эффективной среды, когда толщина каждого входящего в структуру слоя достаточно мала, т.е. $|k_dd_d| \ll 1$, $|k_md_m| \ll 1$, где k_d , k_m — соответственно волновые числа диэлектрического и металлического слоев, многослойная структура может рассматриваться как эффективная оптически одноосная среда. При этом тензор диэлектрической проницаемости ее имеет собственные значения, определяемые выражениями

$$\varepsilon_o = (1-f)\varepsilon_d + f\varepsilon_m, \quad \varepsilon_e = \left[\frac{1-f}{\varepsilon_d} + \frac{f}{\varepsilon_m}\right]^{-1}.$$
(10)

Здесь $f = d_m/(d_m + d_d)$ — фактор заполнения (объемная доля, занимаемая в структуре металлом), ε_d , ε_m — соответственно проницаемости диэлектрического и металлического слоев. При этом величина ε_m описывается формулой Друде:

$$\varepsilon_m(\omega) = \varepsilon_\infty - \omega_p^2 / (\omega^2 + i\omega\Gamma)$$
$$= \varepsilon_\infty - \omega_p^2 / (\omega^2 + \Gamma^2) + i\omega_p^2 \Gamma / [\omega(\omega^2 + \Gamma^2)], (11)$$

где ω_p — плазменная частота, ε_{∞} — постоянная, описывающая вклад межзонных переходов, $\Gamma = V_F/l$ — постоянная затухания, V_F — скорость Ферми, l — среднее значение свободного пути электрона в объемном металле. Для серебра, например, $\varepsilon_{\infty} = 5$, $\omega_p = 14 \cdot 10^{15} \, {\rm s}^{-1}$, $\Gamma = 32 \cdot 10^{12} \, {\rm s}^{-1}$, $V_F = 1.4 \cdot 10^6 \, {\rm ms}^{-1}$ [1]. Расчет, согласно выражению (10) для слоисто-периодической среды

Рис. 2. Зависимости от угла падения света α предельного угла ρ_1 между плоскостью падения и оптической осью ГММ, при котором выполняется условие полного отражения для необыкновенной волны (сплошная кривая), а также угла ρ_2 , для которого внутри слоя метаматериала отсутствует двойное лучепреломление (штриховая кривая). ГММ сформирован на основе слоисто-периодической среды ITO/Ag ($d_m = 20$ nm, f = 0.3), со слоем граничит оптическое стекло BK7. $\lambda = 360$ nm.

ITO/Ag ($d_m = 20$ nm, f = 0.3), при длине падающей световой волны 360 nm дает значения $\varepsilon_o = 1.44$, $\varepsilon_e = -6.32$. Для граничащих со слоем изотропных сред (например, оптическое стекло BK7) $\varepsilon_1 = n_1^2 = 2.36$.

На рис. 2 представлены рассчитанные для структуры "ВК-7 — слой ITO/Ag — ВК-7" зависимости, устанавливающие связь между углом падения α световой волны на слой ГММ и следующими интересующими нас предельными значениями углов ρ между плоскостью падения и оптической осью: ρ_1 , определяющим переход к режиму полного отражения для необыкновенной волны внутри слоя ГММ ($\gamma_2 = 0$), и ρ_2 — углом, для которого внутри слоя метаматериала отсутствует двойное лучепреломление ($\gamma_1 = \gamma_2, \gamma_1 > 0$).

Как видно из рис. 2, можно выделить три различных режима отражения света от слоя ГММ, разделенных сплошными кривыми. Для первого из них (область I, соответствующая случаю $\alpha < \alpha_0 = 51.3^\circ$) в слое независимо от угла между плоскостью падения и оптической осью метаматериала распространяются однородная обыкновенная волна и неоднородная необыкновенная. Для второго (область II, соответствующая случаю $\alpha > \alpha_0$ и $\rho > \rho_1$) — существующие в слое обыкновенная и необыкновенная волны являются неоднородными. Для третьего режима (область III, соответствующая случаю $\alpha > \alpha_0$ и $\rho < \rho_1)$ необыкновенная волна в слое является однородной, а обыкновенная неоднородной. Например, для $\alpha = 53^{\circ}$ второй (третий) режим отражения реализуется при $\rho > 11^{\circ}$ ($\rho < 11^{\circ}$), а двойное лучепреломление отсутствует (т.е. в слое возникает неоднородная волна особого типа, для которой имеет

место неэкспоненциальное уменьшение амплитуды при удалении от границы слоя [7]) при $\rho = 12.2^{\circ}$.

Для вычисления энергетического коэффициента отражения была вычислена двумерная матрица амплитудного коэффициента отражения, преобразующая коэффициенты А1, В1 в коэффициенты А1, В1. Двумерная матрица энергетического коэффициента отражения получается умножением матрицы амплитудного коэффициента отражения на свою эрмитово сопряженную матрицу. При заданных углах α и ρ энергетический коэффициент отражения $R = |\mathbf{E}'_1|^2 / |\mathbf{E}_1|^2$ при изменении поляризации падающей волны изменяется от максимального R_{max} до минимального R_{min} значения, которые вычисляются как собственные значения матрицы энергетического коэффициента отражения. Состояния поляризации падающей волны, при которых достигаются значения R_{max} и R_{min}, в общем случае являются эллиптическими с ортогональными осями эллипсов [9]. Направления осей эллипсов зависят от α, ρ, h и других параметров. На рис. З представлена зависимость R_{max} и R_{min} от толщины слоя ГММ для значений углов α и ρ , соответствующих различным режимам отражения, представленным на рис. 2. Как видно из рис. 3, a и 3, b, в случае, если лишь одна из волн (обыкновенная или необыкновенная) в слое является неоднородной и экспоненциально убывает от границы раздела, минимальное значение коэффициента отражения периодически меняется с толщиной слоя от нуля до некоторого значения, меньшего единицы, а максимальное значение быстро увеличивается и уже при малых $h \cong 200 \,\mathrm{nm}$ оказывается близким к единице. Минимумы зависимости $R_{\min}(h)$ для случая существования в ГММ однородной обыкновенной волны (рис. 3, a) достаточно широкие и соответствуют условию ее интерференционного пропускания. В случае существования в слое ГММ однородной необыкновенной волны (рис. 3, b) минимумы зависимости $R_{\min}(h)$ являются более узкими и также соответствуют условиям интерференционного пропускания.

Представляет интерес случай, когда углы ρ и α расположены в области II. Здесь возможно выполнение равенства $\rho = \rho_2$, когда возникает особое решение уравнений Максвелла, рассмотренное в работе [7]. При всех значениях $\rho > \rho_1 \ (\rho_2 > \rho > \rho_1 \ -$ рис. 3, $c, \ \rho > \rho_2 \$ рис. 3, d), в том числе и при $\rho = \rho_2$ (рис. 3, e), коэффициент отражения $R_{\min}(h)$ при увеличении толщины слоя вырастает до некоторого максимального значения и становится равным нулю при некоторой толщине слоя $h_c < \lambda$, зависящей от углов ρ и α . При дальнейшем увеличении толщины он увеличивается и стремится к единице в отличие от интерференционного поведения в областях I и III. При этом в случае особого решения при $\rho = \rho_2$ система (9) вырождается до четырех уравнений, и корректные значения для полей в слое и коэффициента отражения получаются из решений, приведенных в [7]. Обращение коэффициента отражения от слоя в нуль при возбуждении в нем экспоненциально затухающих волн имеет место только для ГММ с определенными

Рис. 3. Зависимости величин максимального R_{max} и минимального R_{min} коэффициентов отражения, полученных при измерении отражения линейно-поляризованного света всевозможных состояний поляризации, от толщины слоя ГММ на основе слоистопериодической среды ITO/Ag ($d_m = 20 \text{ nm}, f = 0.3$): (a) $\alpha = 50^\circ, \rho = 12^\circ, (b) \alpha = 53^\circ, \rho = 10^\circ, (c) \alpha = 53^\circ, \rho = 12^\circ, (d) \alpha = 53^\circ, \rho = 14^\circ, (e) \alpha = 53^\circ, \rho = 12.2^\circ$. В случае (e) двойное лучепреломление отсутствует. Со слоем граничит оптическое стекло ВК7. $\lambda = 360 \text{ nm}.$

параметрами и не возникает, например, в случае полного отражения от анизотропной среды с ε_o , $\varepsilon_e > 0$, когда волны в слое экспоненциально убывают.

Заключение

Таким образом, в настоящей работе исследованы особенности отражения света от слоя гиперболического метаматериала в случае, когда в нем возможно существование как одной неоднородной волны (обыкновенной или необыкновенной), так и обеих. Получены выражения, позволяющие рассчитать коэффициенты отражения излучения при произвольной поляризации падающего света. Выполнены численные расчеты коэффициента отражения от слоя наноструктуры ITO/Ag для различных режимов отражения. Показано, что если в слое ГММ существует только одна (обыкновенная или необыкновенная) неоднородная волна, то коэффициент отражения R_{min} при определенных толщинах слоя обращается в нуль, что соответствует условию интерференционного пропускания. При возникновении в слое экспоненциально убывающих волн, в том числе при возникновении при определенных углах падения особой неоднородной волны, характеризуемой неэкспоненциальным уменьшением амплитуды при удалении от границы слоя, в зависимости от толщины слоя минимального значения коэффициента отражения, рассчитанного для всевозможных значений поляризации падающего света, появляется минимум, соответствующий полному пропусканию света.

Полученные результаты имеют перспективы применения в микроскопии, а также при разработке новых методов зондирования приповерхностных дефектов различных материалов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] *Cai W., Shalaev V.* Optical Metamaterials: Fundamentals and Applications. Springer, 2010. doi 10.1007/978-1-4419-1151-3
- [2] Metamaterials Handbook 1: Theory and Phenomena of Metamaterials. CRC Press, 2009.
- [3] Pendry J.B. // Phys. Rev. Lett. 2000. V. 85. P. 3966. doi 10.1103/PhysRevLett.85.3966
- [4] Fang N., Lee H., Sun C., Zhang X. // Science. 2005. V. 308.
 P. 534. doi 10.1126/science.1108759
- [5] Kidwai O., Zhukovsky S.V., Sipe J.E. // Phys. Rev. 2012.
 V. A 85. P. 053842. doi 10.1103/PhysRevA.85.053842
- [6] Shekhar P., Atkinson J., Jacob Z. // Nano Convergence. 2014.
 V. 1. P. 14. doi 10.1186/s40580-014-0014-6
- [7] Kurilkina S.N., Petrov N.S., Zimin A.B., Belyi V.N. // J. Opt. 2017. V. 19. P. 125102. doi 10.1088/2040-8986/aa945c
- [8] Петров Н.С., Курилкина С.Н., Зимин А.Б., Белый В.Н. // Опт. и спектр. 2019. Т. 126. С. 319. doi 10.21883/OS.2019.03.47373.311-18
- [9] Федоров Ф.И. Теория гиротропии. Минск, 1976.