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Abstract—Supervised machine learning provides a mech-
anism for establishing an approximation of input-output
relationship between arbitary dataset. However, semantic
interpretation of an underlying decision-making process
of a trained model is very hard, especially considering
the probabilistic nature of machine learning. The paper
discusses possible ways to semantically explain decision-
making process of a trained supervised machine learning
model in order to gain insights to the dataset and derive
new expert knowledge from such models.
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I. INTRODUCTION

Supervised machine learning has become a staple
of data mining techniques in the recent years, solidly
establishing itself as a separate field of research with
a multitude of approaches and algorithms, suitable for
solving a wide array of problems. One of the most impor-
tant applications of such techniques is creating decision
support systems — given a sufficiently large dataset,
supervised machine learning algorithms are able to derive
a decision path by establishing non-linear dependencies
between input features and expected results. However,
one of the main problems of supervised machine learning
algorithms is a semantic interpretation of acquired results
(11, [2].

Although some models, like predictive decision trees,
are relatively easy to examine, the models they produce
are usually too simple to correctly approximate datasets
with non-linear dependencies. Because of this, most of
the dependencies established by a more complex su-
pervised machine learning model, like gradient-boosted
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decision trees, random forests or neural networks, are
highly non-linear in nature and are usually very hard
to interpret. Moreover, such models usually employ a
degree of randomness in order to make the learning
process more robust, making the learning itself prob-
abilistic, which means that several retrainings of the
same model architecture on the same dataset may yield
different models, with their own underlaying decision-
making processes.

II. SEMANTICS OF DECISION-MAKING PROCESS

In many applications, supervised machine learning
models used as part of decision-making process must
not only be correct on the dataset provided, but also be
able to generalize for new data and provide semantically
correct results. While the former is usually solved by
introducing a test and cross-validation dataset split, the
latter is impossible to establish for a general case.
In other words, a trained supervised machine learning
model remains a black box that might produce correct de-
cisions on the items provided in dataset, but the decision-
making process itself remains obscure, making it harder
to "trust" such a model from a semantic interpretation
standpoint.

Another important problem is generation of new expert
knowledge based on data, or gaining insights into the
relationship between a particular data item input and
output in a given model. Even if a model demonstrates
a high prediction accuracy in a certain dataset, the
prediction itself is sometimes not as important as the
decision-making process behind making that prediction.
This is especially true for medical expert systems and
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sympthomogenesis — semantic explanation of dependen-
cies between some measurable inputs and the prediction
of a certain pathology may become, in essence, the
definition of a symptom — a piece of expert knowledge
that establishes, based on dataset given, that specific
types of inputs may, in fact, serve as indicators that a
certain pathology is present. In order to establish such a
dependency, the nature of relation must be explained se-
mantically, i.e. in an understandable and human-readable
form [1].

One of the main problems with establishing an un-
derstandable explanation for a trained model’s decision-
making process is the neccesity to create a reasonable se-
mantically succint representation that doesn’t hide away
the complexity of the model itself. For this purpose, it’s
necessary to distinguish what kind of relationships are
generally percieved as semantically understandable by a
human being.

One of the more "understandable" decision-making
classification techniques is a threshold-based linear bi-
nary classification using a single feature, i.e. feature
exceeding a certain threshold signifies one class, and
feature being lower than this threshold signifies the
opposite class. More formally, given a dataset T of
k elements for binary classification with n-dimensional
input vectors

T ={X,7}, ey

where X € R¥*™ _ inputs matrix, § € B¥ — expected
outputs vector, R* X7 _ a set of rational-valued matrices
with k rows and n columns, B — a set of k-dimensional
vectors of boolean B = {0, 1} values, a threshold-based
linear binary classification using a feature j is established
as follows:

C;(Z,p) = [z; > pl, (2)

where x, denotes a feature with the number ¢ in input
vector, and parameter p is some threshold value. The
classifier (2) assumes that each individual feature of the
input vector is sufficient to perform an entire classifica-
tion. It is also possible to use binary classifier metrics,
like precision, recall and F1-score, in order to establish
the best threshold value p with respect to a dataset (1).
Threshold value can also be adjusted to perform ROC-
analysis and compare individual features for statistical
significance using AUC (area under ROC-curve) metric
(2], [3].

Such a classifier is quite primitive — it only uses a
single feature and assumes a direct linear discrimination
for classification. However, it has the advantage of being
intuitively easy to explain and extract semantic meaning
from. While it is rare for a single feature to serve as
a good discriminator for output on the entire dataset,
it is quite possible that a simple linear discriminative

dependency in a local input neighbourhood would be
representative of a more complex classifier behavior,
while maintaining the ease of explanation.

III. FEATURE-DROPPING AS A WAY TO ESTABLISH
THE MOST STATISTICALLY SIGNIFICANT FEATURES

Within the problem of deriving decision-making pro-
cess from a trained supervised machine learning model
it is possible to establish a sub-problem of determining
the statistical significance of individual features in terms
of how much their specific values affect the predicted
output. While impossible to derive from a single model,
it is possible to use ensembling to evaluate individual
feature significance. In order to do this on a dataset (1),
the following algorithm is proposed:

o A neural-network based feedforward model M is
created for the dataset. Model’s hyperparameters
can be optimized at this stage using grid search
methods in order to find the model that best fits
the dataset (1) with respect to its Fl-score Fy(M).

o For each feature j of total n input features, the
same model architecture (i.e. with the same set of
hyperparameters) is used to train the model M, on
the dataset (1) with feature j excluded from the
dataset.

o For each model M, F1-score F'; (M;) is calculated.

« Amongst n models M} and base model M, the best
model M* is found based on its Fl-score.

« For every feature, a metric is calculated as follows:

Q(My) =1 — (F(M") = Fi(My)) ()

The process can be repeated for any number of com-
binations of individual features — i.e. for pairs, triples,
etc. of input features in the dataset, constrained by
computational complexity and combinatorial explision
of working with individual features. In such a case, it’s
possible to aggregate the metric (3) per feature.

The metric (3) can be used as a relative measure of
statistical significance amongst the features considered.
The idea behind it is that a statistically significant feature
would have a large enough impact on the overal model
that its removal would lead to a greater decrease in the
F1-score whenever this particular feature is not used in
the next model.

Features with high enough statistical significance are
candidates for being discriminative enough to try and es-
tablish a single-feature threshold classifier (2), although
without traversing all the possible input feature combi-
nations, it’s usually impossible to determine whether a
specific feature is representative by itself, or if it relies
on relationships (possibly non-linear) with other features
in order to make a decision.
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I'V. INSTANCE EXPLANATION USING LOCAL LINEAR
APPROXIMATIONS

While simple linear threshold binary classifiers (2)
aren’t usually sufficient to approximate dependencies in
real data, their defining feature of being susceptible to
semantic analysis makes them a useful tool for generating
approximate explanation that may be used to describe a
local behavior of a more complex model [3].

The paper proposes using local linear approximations
as a method for explaining a specific instance prediction
result for a trained supervised machine learning model.
The explanation itself takes a form of a threshold condi-
tion for an arbitary classifier (2) that is representative of a
model’s behavior in proximity to a specific instance data
point, while not necesserily being a good approximation
of the model’s behavior as a whole on the entire input
parameter space.

Given a trained supervised machine learning model
for binary classification Cy(Z,®) : R” — B with a
set of parameters ® that are determined during model’s
learning on dataset (1), a local linear approximation of
this model at data point Z* can be derived using the
following algorithm:

1) A subset of the input vectors from source dataset
(1) are selected based on their proximity to the
data point Z*. For proximity measure, it’s possi-
ble to use any n-dimensional vector measure, for
instance, Euclidean distance:

It’s possible to select an arbitary number of vectors
closest to the data point, or select vectors within a
certain threshold distance.

Dataset point selection is used to determine a ra-
dius d,,;;, around the point Z* that is representative
of a model’s behavior without bias introduced by
other points. The simplest selection method is to
assume d,,;, to be the distance to the closest point
in the dataset.

2) The local proximity Pz = {Z;} of Z* is sampled
within dyp,: VZ;|d(Z*, ;) < dpmin. For generated
sample points {Z;} respective classifier responses
are obtained by evaluating the model C':

{vi} ={Cs(T0)} ©)

3) An explanatory classifier Cg;) with a linear model
is defined:
CE)NE) =05+ 0" T

exp

Q)

The linear classifier C’éip) represents a hyperplane
in feature space that is used to discriminate be-
tween two classes in the original classification

problem solved by C';. Hyperplane parameters 6
and 0" are initialized randomly.

4) Point sets {#;} and {y;} are used as a training set
for explanatory classifier Cg;) in order to obtain
specific hyperplane parameters.

The resulting linear classifier C’g;) is, essentially, a
local linear approximation of a more complex behavior
exhibited by the original model C;. However, this local
approximation is guaranteed to be representative of the
original classifier within d,,,;, radius of the original data
point &*, with the added benifit of being semantically
representative and understandable by a human being.
It is possible to analyze projections of the hyperplane
defined by classifier model (6) in order to establish
specific threshold values for individual features, and
use the projection angle as a measure of this particular
feature impact. For example, if a local approximation
hyperplane is perpendicular to a feature axis k, that
means that original classifier C'y in the proximity of an
explained data point relies only on feature k to produce
a prediction. With the threshold value ¢, it is possible
to produce a semantic form of an explanation using the
following statement:

For inputs T classification result is y* =
because xj, is greater (lesser) than ty.

For arbitary plane alignment, similar statements can be
produced for any input feature, while their impact can be
determined by the cosine of the angle between a feature
axis and the plane.

In other words, given a trained supervised machine
learning model for binary classification C(Z,©)
R™ — B with a set of parameters © that are determined
during model’s learning on dataset (1), a local linear
approximation C’éﬁp) of this model at data point #* can
be used to create a hyperplane, that defines threshold
values t; (axis intersection points) and impact values
wy, = cospy (where @ is the angle between feature
axis and the plane) of an arbitary k-th feature. These
individual values can be used to produce semantic form
of an explanation with the following statements:

For inputs T* and classification result y* = C(Z*), the
fact that xy, is greater (lesser) than ty, affects the output
with impact wy.

Cp(7),

V. EXAMPLE DATA ANALYSIS IN OPHTOLMOLOGICAL
DECISION SUPPORT SYSTEM

One of the domain areas where proposed approaches
were used to generate expert knowledge is ophtolmo-
logical disease diagnosis, specifically optical nerve dis-
orders like multiple sclerosis associated optic neuritis
and glaucoma. The most common diagnostic tool in this
area is optical coherent tomography (OCT) and scanning
laser polarimetry (SLP), producing optical nerve and
retina images and allowing to produce structural features.
On the other hand, clinical practice also uses certain
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functional features. One of the unsolved problems is
discriminating feature selection — some papers suggest
that specific OCT or SLP features are the most impactful,
while the others indicate that functional features should
be used instead [5].

Based on historical data analysis, a simple feedforward
binary classifier was created that uses all structural
and functional features measured during the research
for confirmed cases pathology and control group of
healthy people. Separate classifiers were implemented
for multiple sclerosis and glaucoma. The initial research
demonstrated that the classifiers were performing better
than linear thresholding using any single feature, with
F1 scores of 0.75 versus 0.68 for multiple sclerosis, and
0.93 versus 0.81 for glaucoma [5].

The neural network architecture used in proposed
classifiers comprised 26 input features, 3 hidden layers
of 30 neurons each with ReLU activation function and
dropout, and single-neuron output layer with variable
classification threshold.

Black-box nature of proposed classifiers made it hard
to justify their use in clinical practice, because semantic
correctness of the underlaying decision-making process
was impossible to determine.

The statistical significance analysis based on the pro-
posed metric (3) allowed to confirm that certain sturctural
and functional features were more impactful than the
others. The general domain knowledge about the impact
of individual features coincided with acquired impact
predictions, confirming their correctness [5].

When examining individual samples using proposed
local linear approximations method, it was possible to
determine a clinical explanation for many of the incon-
clusive samples. Established input-output dependencies
explained in an understandable way were used in order
to propose new insights into clinical pathologenesis and
confirm certain forms and characteristics of researched
pathologies.

CONCLUSION

Explanation of decision-making process in trained
supervised machine larning models provides an effective
way to evaluate datasets used for training the model. The
methods proposed in this paper include individual feature
statistical significance evaluation based on the reduction
of Fl-score when this particular feature is excluded from
training, as well as local approximations method that
allows to explain the local behavior of a trained model
within the proxmity of an individual data point.

Proposed algorithms can be used in order to gain
insights into the dataset used to train the data, evaluate
decision-making processes established within the models
to derivate new expert knowledge, and semantically
validate individual predictions. In certain applciations,
such analysis allows to mitigate the issue of black-
box behavior of supervised machine learning algorithms

and enable their applications to domain fields where
transparency of a decision-making process is required,
like complex control systems or medical decision support
systems.

The evaluation of proposed feature impact analysis and
semantic instance explanation were used to evaluate a
medical decision-support system for diagnosing optical
disorders. Feature impact analysis based on the reduction
of Fl-score on the same model showed results that are
similar to the general domain knowledge, while smenatic
interpretation of the decision-making process allowed
to produce new domain knowledge and found a better
understanding of specific dosorder’s pathologenesis.
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AHaJIn3 NpoueccoB NPUHATHS PelleHil 1 H3BJIeYeHne
CEeMAHTHYECKOT0 OMHCAHNUS B 00YYEeHHBIX MOJEJISIX
MAIINHHOTO 00yY€eHHsI C yYnTeJeM B MeJHIHHCKHX

SKCHEPTHBIX CHCTeMax
Kypoukun A.B., Cagos B.C., Kauan T.B.

Mopgen MamuHHOTO OOyYeHHsI C YYHTeJIeM IIpPedoCTaBiIs-
10T MEXaHU3M YCTAHOBJIEHHs alMPOKCHMAIIY B3aMOACHCTBUS
MEX/Jy BXOJHBIMU U BBIXOAHBIMM 3HAYEHUSMU NPOU3BOJIBHBIX
HaOOpOB JaHHbIX. TeM He MeHee, ceMaHTHYeCKash UHTEPIpeTa-
M JIeXKallero B OCHOBE 3TUX MoOJeJeil mporecca NpUHATUS
pelIeHus sIBIIseTCs CIOXKHOM 3afadeil, 0cOOEHHO B KOHTEKCTE
BEPOATHOCTHOTO XapaKTepa HEKOTOPHIX METOJOB MAIIMHHOIO
o0yuyeHusi ¢ yuuTeseM. B cTaTbe paccMarpHBalOTCS METOABI
CEMaHTHYECKOro OOBSACHEHUS TpoLecca IPUHATUS peLICHUS
00y4YeHHOH MOJeIM MalMHHOIO OOYYeHHs C YUMTEeNeM, 4TO
TO3BOJISIET BBIIEIIUTD CJIOXKHbIE 3aBUCUMOCTH U3 HAOOPOB JAHHBIX
Y BBIBECTH C X TTOMOIIBIO HOBBIE SKCTIEPTHBIE 3HAHNS.

Received 30.12.19

286



