
An Architecture of Semantic Information
Extraction Tool Text2ALM
1st Yuliya Lierler

University of Nebraska Omaha
Omaha,USA

ylierler@unomaha.edu

2nd Craig Olson
University of Nebraska Omaha

Omaha,USA
craig.olson19@gmail.com

Abstract—In this work we design a narrative under-
standing tool TEXT2ALM. This tool uses an action lan-
guage ALM to perform inferences on complex interactions
of events described in narratives. The methodology used
to implement the TEXT2ALM system was originally out-
lined by Lierler, Inclezan, and Gelfond [11] via a manual
process of converting a narrative to an ALM model. It
relies on a conglomeration of resources and techniques
from two distinct fields of artificial intelligence, namely,
natural language processing and knowledge representation
and reasoning. The effectiveness of system TEXT2ALM is
measured by its ability to correctly answer questions from
the bAbI tasks by Facebook Research in 2015. This tool
matched or exceeded the performance of state-of-the-art
machine learning methods in six of the seven tested tasks.

I. INTRODUCTION

The field of Information Extraction (IE) is con-
cerned with gathering snippets of meaning from text
and storing the derived data in structured, machine
interpretable form. Consider a sentence BBDO South
in Atlanta, which handles corporate advertising for
Georgia-Pacific, will assume additional duties for brands
like Angel Soft toilet tissue and Sparkle paper tow-
els, said Ken Haldin, a spokesman for Georgia-
Pacific from Atlanta. A sample IE system that fo-
cuses on identifying organizations and their corpo-
rate locations may extract the following predicates
from this sentence: locatedIn(BBDOSouth,Atlanta)
and locatedIn(GeorgiaPacific, Atlanta). These pred-
icates can then be stored either in a relational database or
a logic program, and queried accordingly by well-known
methods in computer science. Thus, IE allows us to
turn unstructured data present in text into structured data
easily accessible for automated querying. In this paper,
we focus on an IE system that is capable of processing
simple narratives with action verbs, in particular, verbs
that express physical acts such as go, give, and put.
Consider a sample narrative, named JS, discourse:

John traveled to the hallway. (1)
Sandra journeyed to the hallway. (2)

The actions travel and journey in the narrative describe
changes to the narrative’s environment, and can be cou-

This is an abstract of the paper titled ”Information Extraction Tool
Text2Alm: From Narratives to Action Language System Descriptions”
that appeared at Proceedings of the 35th International Conference on
Logic Programming in 2019. The work was partially supported by the
NSF 1707371 grant.

pled with the reader’s commonsense knowledge to form
and alter the reader’s mental picture for the narrative. For
example, after reading sentence (1), a human knows that
(i) John is the subject of the sentence and traveled is an
action verb describing an action performed by John; and
(ii) traveled describes the act of motion, and specifically
that John’s location changes from an arbitrary initial
location to a new destination, the hallway. Lierler et
al. [11] outline a methodology for constructing a Ques-
tion Answering (QA) system by utilizing IE techniques.
Their methodology focuses on performing inferences
using the complex interactions of events in narratives.
Their process utilizes an action language ALM [7]
and an extension of the VERBNET lexicon [10], [16].
Language ALM enables a system to structure knowledge
regarding complex interactions of events and implicit
background knowledge in a straight-forward and modu-
larized manner. The represented knowledge is then used
to derive inferences about a given text. The proposed
methodology assumes the extension of the VERBNET
lexicon with interpretable semantic annotations in ALM.
The VERBNET lexicon groups English verbs into classes
allowing us to infer that such verbs as travel and journey
practically refer to the same class of events.

The processes described in [11] are exemplified via
two sample narratives that were completed manually. The
authors translated those narratives to ALM programs by
hand and wrote the supporting ALM modules to capture
knowledge as needed. A narrative understanding system
developed within this work, TEXT2ALM, automates the
method from [11]. When considering the JS discourse as
an example, system TEXT2ALM produces a set of facts
in spirit of the following:
move(john, hallway, 0) move(sandra, hallway, 1) (3)
loc_in(john, hallway, 1) loc_in(john, hallway, 2) (4)

loc_in(sandra, hallway, 2) (5)

where 0, 1, 2 are time points associated with occurrences
of described actions in the JS discourse. Intuitively,
time point 0 corresponds to a time prior to utterance
of sentence (1). Time point 1 corresponds to a time
upon the completion of the event described in (1). Facts
in (3)-(5) allow us to provide grounds for answering

229



Figure 1. Sample transition diagram capturing the JS discourse.

questions related to the JS discourse such as: Is John
inside the hallway at the end of the story (time 2)?
Indeed, given the fact loc_in(john, hallway, 2). Who is
in the hallway at the end of the story? John and Sandra
constitute an answer given loc_in(john, hallway, 2) and
loc_in(sandra, hallway, 2).

II. BACKGROUND

a) NLP Resource VERBNET: VERBNET is a
domain-independent English verb lexicon organized into
a hierarchical set of verb classes [10], [16]. The verb
classes aim to achieve syntactic and semantic coherence
between members of a class. Each class is character-
ized by a set of verbs and their thematic roles. For
example, the verb run is a member of the VERBNET
class RUN-51.3.2. This class is characterized by (i) 96
members including verbs such as bolt, frolic, scamper,
and weave, (ii) four thematic roles, namely, theme,
initial location, trajectory and destination.

b) Dynamic Domains, Transition Diagrams, and
Action Language ALM: Action languages are formal
KRR languages that provide convenient syntactic con-
structs to represent knowledge about dynamic domains.
The knowledge is compiled into a transition diagram,
where nodes correspond to possible states of a considered
dynamic domain and edges correspond to actions/events
whose occurrence signal transitions/changes in the dy-
namic system.

The JS discourse exemplifies a narrative modeling
a dynamic domain with three entities John, Sandra,
hallway and four actions, specifically:

1) ajin – John travels into the hallway,
2) ajout – John travels out of the hallway,
3) asin – Sandra travels into the hallway, and
4) asout – Sandra travels out of the hallway.

The transition diagram capturing the possible states
of this domain is given in Figure 1. State s1 designates
the state where the location of John and Sandra is the
hallway. Likewise, state s2 characterizes the state where
John’s location is the hallway, but Sandra’s location is
not the hallway. Occurrence of action asout is respon-
sible for the transition from state s1 to state s2.

Scenarios of a dynamic domain correspond to trajec-
tories in the domain’s transition diagram. Trajectories
are sequences of alternating states and actions. A tra-
jectory captures the sequence of events, starting with the
initial state associated with time point 0. Each edge is
associated with the time point incrementing by 1. Con-
sider a sample trajectory 〈s4, ajin, s2, asin, s1〉 for the
transition diagram in Figure 1. It captures the following
scenario:

• John and Sandra are not in the hallway at the initial
time point 0,

• John travels into the hallway at time point 0, re-
sulting in a new state of the dynamic system to be
s2 (John is in the hallway, while Sandra is not) at
time 1,

• Sandra travels into the hallway at time 1, resulting
in a new state of the dynamic system to be s3 (John
and Sandra are both in the hallway) at time 2.

It is easy to see how this sample trajectory captures the
scenario of the JS discourse.

In this work we utilize an advanced action language
ALM [7] to model dynamic domains of given narra-
tives. This language provides an ability to capture the
commonalities of similar actions. We illustrate the syntax
and semantics of ALM using the JS discourse dynamic
domain by first defining an ALM ”system description”
and then an ALM ”history” for this discourse.

In language ALM, a dynamic domain is described via
a system description that captures a transition diagram
specifying the behavior of a given domain. An ALM

system description consists of a theory and a structure.
A theory is comprised of a hierarchy of modules, where
a module represents a unit of general knowledge. A
module contains declarations of sorts, attributes, and
properties of the domain, together with axioms describ-
ing the behavior of actions and properties. There are
four types axioms, namely, (i) dynamic causal laws, (ii)
executability conditions, (iii) state constraints, and (iv)
function definitions. The properties that can be changed
by actions are called fluents and modeled by functions
in ALM. The structure declares instances of entities and
actions of the domain. Figure 2 illustrates these concepts
with the ALM formalization of the JS discourse domain.
The resulting formalization depicts the transition diagram
that we can obtain from the diagram in Figure 1 by
erasing the edges annotated with ajout and asout .

The JS discourse theory is composed of a single mod-
ule containing the necessary knowledge associated with
the domain. The module starts with the declarations of
sorts (agents, points, move) and fluents (loc_in). Sorts
universe and actions are predefined in ALM so that any
entity of a domain is considered of universe sort, whereas
any declared action/event is considered of actions sort.
While declaring actions, the ALM user specifies its
attributes, which are roles that entities participating in the

230



system description JS_discourse
theory JS_discourse_theory
module JS_discourse_module
sort declarations
points, agents :: universe
move :: actions
attributes
actor : agents -> booleans
origin : points -> booleans

destination : points -> booleans
function declarations
fluents
loc_in : agents * points -> booleans
axioms
dynamic causal laws

occurs(X) causes loc_in(A,D)
if instance(X,move), actor(X,A),

destination(X,D).
executability conditions
impossible occurs(X) if

instance(X,move), actor(X,A),
loc_in(A,P), origin(X,O), P!=O.

impossible occurs(X) if
instance(X,move), actor(X,A),
loc_in(A,P), destination(X,D), P=D.

structure john_and_sandra
instances

john, sandra in agents
hallway in points

ajin in move
actor(john) = true
destination(hallway) = true
asin in move
actor(sandra) = true
destination(hallway) = true

Figure 2. An ALM system description formalizing the JS discourse
dynamic domain

action take. For instance, the attributes of move include
actor, origin, and destination. Here we would like a
reader to draw a parallel between the notions of an
attribute and a VERBNET thematic role.

There are two types of axioms in the JS discourse
theory: dynamic causal laws and executability conditions.
The only dynamic causal law states that if a move
action occurs with a given actor and destination, then
the actor’s location becomes that of the destination. The
executability conditions restrict an action from occurring
if the action is an instance of move, where the actor
and actor’s location are defined, but either (i) the actor’s
location is not equal to the origin of the move event or
(ii) the actor’s location is already the destination.

An ALM structure in Figure 2 defines the entities of

sorts agents, points, and actions that occurred in the JS
discourse. For example, it states that john and sandra are
agents. Then, the structure declares an action ajin as an
instance of move where john is the actor and hallway is
the destination. Likewise, asin is declared as an instance
of move, where sandra is the actor and hallway is the
destination.

In ALM, a history is a particular scenario described
by observations about the values of fluents and events
that occur. In the case of narratives, a history describes
the sequence of events by stating occurrences of spe-
cific actions at given time points. For instance, the JS
discourse history contains the events

• John moves to the hallway at the beginning of the
story (an action ajin occurs at time 0) and

• Sandra moves to the hallway at the next point of
the story (an action asin occurs at time 1).

The following history is appended to the end of the
system description in Figure 2 to form an ALM program
for the JS disocurse. We note that happened is a keyword
that captures the occurrence of actions.
happened(ajin, 0).
happened(asin, 1).

c) An ALM Solver CALM: System CALM is an
ALM solver developed at Texas Tech University by
Wertz, Chandrasekan, and Zhang [18]. It uses an ALM

program to produce a ”model” for an encoded dynamic
domain. Behind the scene system CALM (i) constructs
a logic program under stable model/answer set seman-
tics [5], whose answer sets/solutions are in one-to-one
correspondence with the models of the ALM program,
and (ii) uses an answer set solver SPARC [1] for finding
these models. The ALM program in Figure 2 follows
the CALM syntax. However, system CALM requires two
additional components for this program to be executable.
The user must specify (i) the computational task and (ii)
the max time point considered.

System CALM can solve temporal projection and plan-
ning computational tasks. Our work utilizes temporal
projection, which is the process of determining the
effects of a given sequence of actions executed from
a given initial situation (which may be not fully deter-
mined). In the case of a narrative, the initial situation
is often unknown, whereas the sequence of actions are
provided by the discourse. Inferring the effects of ac-
tions allows us to properly answer questions about the
domain. To perform temporal projection, we insert the
line following statement in the ALM program prior to
the history:

temporal projection
Additionally, CALM requires the max number of time
points/steps to be stated. Intuitively, we see this number
as an upper bound on the ”length” of considered trajec-
tories. In temporal projection problems, this information
denotes the final state’s time point. To define the max

231



step for the JS discourse ALM program, we insert the
following line in the ALM program:

max steps 3
For the case of the temporal projection task, a model of
an ALM program is a trajectory in the transition system
captured by the ALM program that is ”compatible”
with the provided history. For example, a trajectory
〈s4, ajin, s2, asin, s1〉 is the only model for the JS
discourse ALM program. For the JS discourse ALM
program, the CALM computes a model that includes the
following expressions:

happened(ajin, 0), happened(asin, 1),
loc_in(john, hallway, 1),
loc_in(sandra, hallway, 2),
loc_in(john, hallway, 2)

d) ALM Knowledge Base COREALMLIB: The
COREALMLIB is an ALM library of generic com-
monsense knowledge for modeling dynamic domains
developed by Inclezan [6]. The library’s foundation is the
Component Library or CLib [2], which is a collection
of general, reusable, and interrelated components of
knowledge. CLib was populated with knowledge stem-
ming from linguistic and ontological resources, such as
VERBNET, WORDNET, FRAMENET, a thesaurus, and
an English dictionary. The COREALMLIB was formed
by translating CLib into ALM to obtain descriptions of
123 action classes grouped into 43 reusable modules. The
modules are organized into a hierarchical structure and
contain action classes.

III. SYSTEM TEXT2ALM ARCHITECTURE

Lierler, Inclezan, and Gelfond [11] outline a method-
ology for designing IE/QA systems to make inferences
based on complex interactions of events in narratives.
This methodology is exemplified with two sample narra-
tives that were completed manually by the authors. Sys-
tem TEXT2ALM automates the process outlined in [11].
Figure 3 pretenses the architecture of the system. It
implements four main tasks/processes:

1) TEXT2DRS Processing – Entity, Event, and Relation
Extraction

2) DRS2ALM Processing – Creation of ALM Program
3) CALM Processing – ALM Model Generation and Inter-

pretation
4) QA Processing

In Figure 3, each process is denoted by its own column.
Ovals identify inputs and outputs. Systems or resources
are represented with white, grey, and black rectangles.
White rectangles denote existing, unmodified resources.
Grey rectangles are used for existing, but modified re-
sources. Black rectangles signify newly developed sub-
systems. The first three processes form the core of
TEXT2ALM, seen as an IE system. The QA Processing
component is specific to the bAbI QA benchmark
that we use for illustrating the validity of the approach
advocated by TEXT2ALM. The system is available at
https://github.com/cdolson19/Text2ALM.

Figure 3. System TEXT2ALM Architecture

a) TEXT2DRS Processing: To produce ALM sys-
tem descriptions for considered narratives, the method by
Lierler et al. [11] utilizes NLP resources, such as seman-
tic role labeler LTH [8], parsing and coreference resolu-
tion tools of CORENLP [13], and lexical resources PROP-
BANK [17] and SEMLINK [3]. System TEXT2DRS [12]
was developed with these resources to deliver a tool that
extracts entities, events, and their relations from given
narratives. The TEXT2DRS tool became a starting point
in the development of TEXT2ALM. The output of the
TEXT2DRS system is called a discourse representation
structure, or DRS [9]. A DRS captures key information
present in discourse in a structured form. For example,
for the JS discourse its DRS will include information that
there are three entities and two events that take part in
the JS narrative. It will also identify both of the events of
the discourse with the VERBNET class RUN-51.3.2-1.

b) DRS2ALM Processing: The DRS2ALM subsys-
tem is concerned with combining commonsense knowl-
edge related to events in a discourse with the information
from the DRS generated by TEXT2DRS. The goal of this
process is to produce an ALM program consisting of a
system description and a history pertaining the scenario
described by the narrative. The system description is
composed of a theory containing relevant commonsense
knowledge, and a structure that is unique for a given
narrative. One of the key components of the DRS2ALM
Processing is the COREALMLIB knowledge base, which
was modified to form CORECALMLIB to suit the needs
of the TEXT2ALM system. In particular CORECALMLIB
adds a layer to COREALMLIB that maps the entires in
VERBNET ontology with the entries in COREALMLIB
ontology. This layer allows us to properly convert the
DRS of a given narrative into an ALM system descrip-
tion.

c) CALM and QA Processing: In the CALM Pro-
cessing performed by TEXT2ALM, the CALM system
is invoked on a given ALM program stemming from
a narrative in question. The CALM system computes a
model. We then perform post-processing on this model

232



to make its content more readable for a human.
A model derived by the CALM system contains facts

about the entities and events from the narrative supple-
mented with basic commonsense knowledge associated
with the events. We use the bAbI QA tasks to test the
TEXT2ALM system’s IE effectiveness and implement QA
capabilities within the SPHINX subsystem (see Figure 3).
The SPHINX component utilizes regular expressions to
identify a kind of question that is being asked in the
bAbI tasks and then query the model for relevant infor-
mation to derive an answer. The SPHINX system is not a
general purpose question answering component.

Additional information on the components of system
TEXT2ALM are given in [15].

IV. TEXT2ALM EVALUATION

a) Related Work:: Many modern QA systems pre-
dominately rely on machine learning techniques. How-
ever, there has recently been more work related to the
design of QA systems combining advances of NLP
and KRR. The TEXT2ALM system is a representative
of the latter approach. Other approaches include the
work by Clark, Dalvi, and Tandon [4] and Mitra and
Baral [14]. Mitra and Baral [14] use a provided training
dataset of narratives, questions, and answers to learn the
knowledge needed to answer similar questions. Their
approach posted nearly perfect test results on the bAbI
tasks. However, this approach doesn’t scale to narratives
that utilize other action verbs, which are not present
in the training set, including synonymous verbs. For
example, if their system is trained on bAbI training
data that contains verb travel it will process the JS
discourse correctly. Yet, if we alter the JS discourse
by exchanging travel with a synonymous word stroll,
their system will fail to perform inferences on this
altered narrative (note that stroll does not occur in the
bAbI training set). The TEXT2ALM system does not
rely upon the training narratives for the commonsense
knowledge. If the verbs occurring in narratives belong to
VERBNET classes whose semantics have been captured
within CORECALMLIB then TEXT2ALM is normally
able to process them properly.

Another relevant QA approach is the work by Clark,
Dalvi, and Tandon [4]. This approach uses VERBNET to
build a knowledge base containing rules of preconditions
and effects of actions utilizing the semantic annotations
that VERBNET provides for its classes. In our work,
we can view ALM modules associated with VERBNET
classes as machine interpretable alternatives to these
annotations. Clark et al. [4] use the first and most basic
action language STRIPS for inference that is more limited
than ALM.

b) Evaluation: We use Facebook AI Research’s
bAbI dataset [19] to evaluate system TEXT2ALM. These
tasks were proposed by Facebook Research in 2015 as

1 Mary moved to the bathroom.
2 Sandra journeyed to the bedroom.
3 Mary got the football there.
4 John went to the kitchen.
5 Mary went back to the kitchen.
6 Mary went back to the garden.
7 Where is the football? garden 3 6

Figure 4. Example entry from bAbI task 2 training set

a benchmark for evaluating basic capabilities of QA
systems in twenty categories. Each of the twenty bAbI
QA tasks is composed of narratives and questions, where
1000 questions are given in training set and 1000 ques-
tions are given in a testing set. The goal of the tasks are
to process testing sets properly while also minimizing
the number of questions used from the training set to
develop a solution. We evaluate the TEXT2ALM system
with all 1000 questions in the testing sets for tasks 1,
2, 3, 5, 6, 7, and 8. These tasks are selected because
they contain action-based narratives that are of focus in
this work. Figure 4 provides an example of a narrative
and a question from the training set of bAbI task
2-Two Supporting Facts. For this task, a QA system
must combine information from two sentences in the
given narrative. The narrative in Figure 4 consists of six
sentences. A question is given in line 7, followed by the
answer and identifiers for the two sentences that provide
information to answer the question.

The bAbI dataset enables us to compare TEXT2ALM’s
IE/QA ability with other modern approaches designed
for this task. The left hand side of Figure 5 com-
pares the accuracy of the TEXT2ALM system with the
machine learning approach AM+NG+NL MemNN de-
scribed by Weston et al. [19]. In that work, the authors
compared results from 8 machine learning approaches
on bAbI tasks and the AM+NG+NL MemNN (Mem-
ory Network) method performed best almost across the
board. There were two exceptions among the seven tasks
that we consider. For the Task 7-Counting the AM+N-
GRAMS MemNN algorithm was reported to obtain a
higher accuracy of 86%. Similarly, for the Task 8-
Lists/Sets the AM+NONLINEAR MemNN algorithm
was reported to obtain accuracy of 94%. Figure 5 also
presents the details on the Inductive Rule Learning and
Reasoning (IRLR) approach by [14]. We cannot compare
TEXT2ALM performance with the methodology by [4]
because their system is not available and it has not been
evaluated using the bAbI tasks.

System TEXT2ALM matches the Memory Network
approach by Weston et al. [19] at 100% accuracy in tasks
1, 2, 3, and 6 and performs better on tasks 7 and 8. When
compared to the methodology by Mitra and Baral [14],
the Text2ALM system matches the results for tasks 1, 2,
3, 6, and 8, but is outperformed in tasks 5 and 7.

233



Accuracy
bAbI Task AM+NG+NL IRLR TEXT2ALM

MemNN
1-Single SF 100 100 100
2-Two SF 100 100 100
3-Three SF 100 100 100
5-Three AR. 98 100 22
6-Yes/No 100 100 100
7-Counting 85 100 96.1
8-Lists/Sets 91 100 100

Training Size
1-Single SF 250 1000 100
2-Two SF 500 1000 100
3-Three SF 500 1000 100
5-Three AR. 1000 1000 100
6-Yes/No 500 1000 100
7-Counting 1000 1000 100
8-Lists/Sets 1000 1000 100

Figure 5. System Evaluation and Training Set Sizes

The right hand side of Figure 5 presents the number
of questions in training sets used by each of the reported
approaches in considered tasks. The TEXT2ALM training
set comprised of 100 questions per QA bAbI task,
for a total of 700 questions. These training questions
and their associated narratives were used to develop the
CORECALMLIB knowledge base (recall Library CORE-
CALMLIB adopts the earlier COREALMLIB knowledge
base). As a result of this process, the CORECALMLIB
covers 20 first-level VERBNET classes out of its 274.

V. CONCLUSION

System TEXT2ALM matched or outperformed the re-
sults of modern machine learning methods in all of these
tasks except task 5. It matched the results of another KRR
approach [14] in tasks 1, 2, 3, 6, and 8. However, our
approach adjusts well to narratives with a more diverse
lexicon due to its architecture. Additionally, the ability
of the CORECALMLIB to represent the interactions of
events in the bAbI narratives serves as a proof of
usefulness of the original COREALMLIB endeavor.

REFERENCES

[1] E. Balai, M. Gelfond, and Y. Zhang, “Towards answer set pro-
gramming with sorts,” in Logic Programming and Nonmonotonic
Reasoning, P. Cabalar and T. C. Son, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 135–147.

[2] K. Barker, B. Porter, and P. Clark, “A Library of Generic
Concepts for Composing Knowledge Bases,” Proceedings of the
1st International Conference on Knowledge Capture - K-CAP,
pp. 14–21, 2001.

[3] C. Bonial, K. Stowe, and M. Palmer, “SemLink,”
https://verbs.colorado.edu/semlink/, 2013.

[4] P. Clark, B. Dalvi, and N. Tandon, “What happened? Leveraging
VerbNet to predict the effects of actions in procedural
text,” CoRR, vol. abs/1804.05435, 2018. [Online]. Available:
http://arxiv.org/abs/1804.05435

[5] M. Gelfond and V. Lifschitz, “The stable model semantics
for logic programming,” in Proceedings of International Logic
Programming Conference and Symposium, R. Kowalski and
K. Bowen, Eds. MIT Press, 1988, pp. 1070–1080.

[6] D. Inclezan, “CoreALMlib: An ALM library translated from the
Component Library,” Theory and Practice of Logic Programming,
vol. 16, no. 5-6, pp. 800–816, 2016.

[7] D. Inclezan and M. Gelfond, “Modular action language ALM,”
TPLP, vol. 16, no. 2, pp. 189–235, 2016. [Online]. Available:
http://dx.doi.org/10.1017/S1471068415000095

[8] R. Johansson and P. Nugues, “LTH: Semantic structure ex-
traction using nonprojective dependency trees,” in Proceedings
of the Fourth International Workshop on Semantic Evaluations
(SemEval-2007).

[9] H. Kamp and U. Reyle, From discourse to logic. Kluwer, 1993,
vol. 1,2.

[10] K. Kipper-Schuler, “VerbNet: A broad-coverage, comprehensive
verb lexicon,” Ph.D. dissertation, University of Pennsylvania,
2005.

[11] Y. Lierler, D. Inclezan, and M. Gelfond, “Action languages
and question answering,” in IWCS 2017 - 12th International
Conference on Computational Semantics - Short papers, 2017.

[12] G. Ling, “From Narrative Text to VerbNet-
Based DRSes: System Text2DRS,” 2018.
[Online]. Available: https://www.unomaha.edu/college-
of-information-science-and-technology/natural-
language-processing-and-knowledge-representation-
lab/_files/papers/Text2Drses_system_description.pdf

[13] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard,
and D. McClosky, “The Stanford CoreNLP Natural Language
Processing Toolkit,” Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstra-
tions, pp. 55–60, 2014.

[14] A. Mitra and C. Baral, “Addressing a Question Answering
Challenge by Combining Statistical Methods with Inductive Rule
Learning and Reasoning,” pp. 2779–2785, 2016.

[15] C. Olson, “Processing Narratives by Means of Action Lan-
guages,” Master’s thesis, University of Nebraska Omaha, 5 2019.

[16] M. Palmer, “VerbNet,” Boulder, 2018. [Online]. Available:
https://verbs.colorado.edu/verb-index/vn3.3/

[17] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank:
An annotated corpus of semantic roles,” Computational Linguis-
tics, vol. 31, no. 1, pp. 71–106, Mar. 2005.

[18] E. Wertz, A. Chandrasekan, and Y. Zhang, “CALM: a Compiler
for Modular Action Language ALM,” unpublished draft, 2018.

[19] J. Weston, A. Bordes, S. Chopra, and T. Mikolov, “Towards AI-
complete question answering: A set of prerequisite toy tasks,”
CoRR, vol. abs/1502.05698, 2015.

Архитектура приложения Text2ALM для
семантической обработки языка

Юлия Лирлер и Крэйг Олсон

Приложения Text2ALM ориентируется на семантическую
обработку текста с глаголами действия. Эта система ис-
пользует язык программирования действий под названием
ALM для выполнения выводов о сложных взаимодействиях
событий, описанных в тексте. Система опирается на ресурсы
и методы из двух различных областей искусственного интел-
лекта, а именно: обработка естественного языка и представ-
ление знаний. Эффективность приложения Text2ALM изме-
ряется по ее способности правильно отвечать на вопросы из
задач babi (FacebookResearch, 2015). Text2ALMсоответство-
вал или превышал производительность современныхметодов
машинного обучения в шести из семи протестированных
заданий.

Received 04.01.2020

234


