
Optimizing the concurrency level of network
artificial intelligence computations

Anatoly Prihozhy
Information Technologies and Robotics Department

Belarusian National Technical University
Minsk, Republic of Belarus
Email: prihozhy@yahoo.com

Abstract—Recent achievements in development of artifi-
cial intelligence systems would be impossible without the
use of high performance distributed computing platforms.
This paper presents a graph model of concurrent network
schedules and a technique that estimates the execution time
and implementation cost over maximum weight cliques in
task graphs. It proposes an algorithm for recalculating
clique sets after changing the concurrency level of a
schedule by adding an edge to the concurrency graph
and removing the edge from the complement graph. Since
the set of pairs of concurrent tasks has been found, it
treats a schedule existence problem as solving a combined
logical equation. The proposed model and technique are a
basis for the development and implementation of network
algorithms.

Keywords—artificial intelligence systems; distributed
computations; computing schedule; parallelization; opti-
mization

I. INTRODUCTION

Distributed artificial intelligence systems and semantic net-
works aim at solving complex knowledge acquisition, reason-
ing, learning, recognition, planning, decision-making and other
problems in the case they process data on large-scale distributed
computing platforms [1] - [3]. Distributed intelligence systems
consist of numerous autonomous agents that perform learning,
processing and communication tasks. Large-scale graph mining
is an important technology in modeling, analyzing and solving
artificial intelligence problems on large computer networks [4] -
[6]. Processing such graphs is possible only by developing dis-
tributed algorithms for parallel systems. Deep neural networks
are an important branch in artificial intelligence [1]. In deep
machine learning, the neural networks trained by observing
big data provide good solutions for problems thought to be
unsolvable: autonomous driving, image classification, speech
recognition, medical diagnosis, complex games and others. Par-
allelization strategies and concurrent algorithms for evaluation,
implementations and training of deep neural networks make
such networks the field of high performance parallel computing.
In this paper, we extend the net scheduling techniques [7] -
[9] for optimizing the concurrency level of solving intelligent
problems.

II. GRAPH MODEL OF NETWORK SCHEDULE
Network scheduling determines the precedence and concur-

rency relations between tasks, which conserve both time and
resources [7] - [9]. Let N = 1, ...n be a set of task numbers.
A directed graph GH = (N,H) can describe the net schedule
without constraints on resources, where H is the tasks direct
precedence relation. If tasks i1, ..., ik are direct predecessors

of task j in the network schedule, then j may execute when
all of its predecessors have finished executing.

A binary matrix Q (Figure 1) describes data dependences
between the tasks, which element qi,j equals 1 if i is a
predecessor of j, and equals 0 otherwise. In a triple matrix W ,
element wi,j equals 0 if the tasks i and j may not execute
on the same processor, equals 1 if the tasks may execute
on the same processor sequentially, and equals 2 if the tasks
may execute on the same processor concurrently. The last case
applies when the tasks T1 and T2 are mutually exclusive [7];
that is the tasks are under conditions if c1 then T1 end if
and if c2 then T2 end if , and test variables c1 and c2 are
orthogonal, i.e. they cannot take value true simultaneously. We
can equivalently transform the tasks behavior to the single basic
block dataflow model presented in [9].

Figure 1. Matrices Q and W of tasks precedence and compatibility

III. SCHEDULE EXECUTION TIME AND COST
Let tj and sj be the execution time and implementation cost

respectively of a task on processor of type j. Time tj can be
constant or variable. If type(i) denotes the type of processor
that executes task i, the network schedule execution time is

T = max
u∈U

D

∑
i∈u

ttype(i) (1)

where UD is the set of cliques of graph GD = (N,D)
constructed on a set N of the nodes that represent tasks,
and on a set D of edges that represent precedence of the
tasks. The clique of GD that gives the maximum sum of the
tasks execution time defines the schedule execution time. The
network schedule implementation cost is

S =

Types∑
j=u

Sj × (max
v∈VD

mjv) (2)

where Types is the number of processor types; VD is the
set of cliques of graph GD = (N,D) constructed on the set D

225



of edges that represent concurrency of the tasks. The number
of processors of type j needed to execute the tasks of clique v
concurrently is mjv . The sum of costs of all type processors
defines the overall cost. Clique set VD provides the number of
all type processors. Sets UD and VD determine the path and
section of maximum weight in graph GH .

IV. OPTIMIZATION OF NETWORK
SCHEDULES

The optimization of a network schedule aims at: (1) minimiz-
ing the schedule execution time, given constraints on resources;
(2) minimizing the resources, given constraints on the execution
time. While set DM determines the most concurrent (and thus
fastest) network schedule, a subset D of DM determines a
network schedule of less concurrency, yet lower system cost.
Set D also defines execution time T and cost S. We can find up
to 2r different network schedules, where r is the cardinality of
set DM . As the tasks in any pair of set DO of orthogonal tasks
execute concurrently and does not require additional resources,
we can always include DO in D. For instance, the sample
matrix Q (Figure 1) is potentially a source for generating
239 network schedules. Synthesizing a net schedule involves
solving one of two optimization problems, depending on the
optimization criteria selected:

min
D∈DM

{
TD|SD ≤ SO

}
(3)

or

min
D∈DM

{
SD|TD ≤ TO

}
(4)

where TO and SO are constraints on execution time and
implementation cost. We account for the estimates of execution
time (1) and implementation cost (2) to calculate the value of
TO and SO .

Two techniques let us generate D while solving problems
(3) and (4) by consecutively adding pairs to D and by con-
secutively removing pairs from D. The first technique solves
problem (3) and starts with set D = DO . The second technique
solves problem (4), starts with set DM , and never removes
orthogonal pairs of DO from D. Because of the concurrency
of orthogonal tasks, the pairs of DO do not require additional
execution time and implementation cost.

Both techniques select a pair for including in or removing
from D by analyzing the maximum-weight cliques of sets UD

and VD . First of all, they select pairs that decrease the execution
time and not increase the implementation cost.

V. CALCULATION OF GRAPH CLIQUE SETS
Adding or removing a pair from D changes the clique set

according to four rules. Two rules transform UD into UD” when
we add pair d = (i, j) ∈ DM to set D creating new set D” =
D ∪ {d}. The first rule splits a clique containing tasks i and j
into two new cliques of less cardinality; the second rule allows
the removal of cliques from the new set D”:
• Rule 1 (splitting) - If element u ∈ UD satisfies the

condition that {i, j} ∈ u, then the elements u\{i} and
u\{j} are added to set UD”; otherwise element u is

• Rule 2 (absorbing) - If in set UD” two elements u′ and
u” exist for which u′ ⊇ u”, then element u” is removed
from the set

Two additional rules recalculate set VD as new set VD”. The
third rule combines two cliques containing both tasks i and j
into a new clique that is included into set VD”. The fourth rule
removes the absorbed cliques from the set:

• Rule 3 (merging) - If v′∪v” ⊇ {i, j} is true for v′, v” ∈
VD then element v = (v′ ∩ v”)∪ {i, j} is added to VD”.
All elements of VD are also included in VD”

• Rule 4 (absorbing) - If in set VD” two elements v′ and
v” exist for which v′ ⊇ v” then element v” is removed
from the set

If we remove pair d from set D and D′ = D\{d} is the
new set, then rules 1 and 2 transform set VD into the set VD”,
and rules 3 and 4 transform set UD into the set UD”.

Solving problem (3) to minimize the execution time for
matrix Q with one processor of type p1 and two processors of
type p2 (tp1 = 100ms, tp2 = 40ms) produces set D, which
contains 31 pairs, as described by the zero elements of the
top right part of matrix Qx

D (Figure 2). The markings along
the column heads indicate the tasks, executed on processors of
type p1, p2 and control type c. No pair is added to D without
increasing the number of processors (Figure 3). For each clique
of set UD , the execution time is the sum of the clique tasks’
execution time. The overall time is 340 ms (Figure 4).

Figure 2. Matrix Qx
D

Figure 3. Clique set VD for matrix Qx
D

If we add pair (i, j) to set D, tasks i and j are concurrent;
if (i, j) is not included in set DM , task i precedes task j. For
pair (i, j) of set DM not included in set D, we know that tasks
i and j are not concurrent, but do not know whether i should
precede j or j should precede i.

Introducing Boolean variable xij into matrix Qx
D for pair

(i, j) and its negation xij for pair (j, i) solves this problem.
If xij equals 1, task i precedes task j. If the value equals 0,
j precedes i. Thus, while many net schedules possible for a
given D, for some set D no net schedule exists.

226



Figure 4. Clique set UD for matrix Qx
D

VI. SOLVING THE EXISTENCE PROBLEM
For set D and the given values of variables xij , a net

schedule exists if the matrix derived from the matrix Qx
D by

substituting the variable values describes a transitive relation.
This transitivity condition expresses the requirement that the net
schedule must have the level of concurrency the set D defines.
The relation is transitive if the logical equations (5)-(7) have
at least one solution for xij . In the equations, variables zij are
intermediate. Equation (5) describes the transitivity condition
for the elements of set D, and equation (6) describes the
transitivity condition for the elements out of D. One algorithm
effectively solves the equations (5)-(7) by constructing a graph
Gx

D and searching for its non-conflicting labeling (Figure 5).∑
i,j,k∈N,(i,j)∈D

(i,k)/∈D,(k,j)/∈D

[(zik ∧ zkj) ∨ (zjk ∧ zki)] (5)

∑
i,j,k∈N,(i,j)/∈D

(i,k)/∈D,(k,j)/∈D

[(zij ∧ zik ∧ zkj) ∨ (zji ∧ zjk ∧ zki)] (6)

zij =


1, if (i, j) /∈ DM and i < j

0, if (i, j) /∈ DM and j < i

xij , if (i, j) ∈ DM\D and i < j

xij , if (i, j) ∈ DM\D and j < i

(7)

The graph nodes are variables xij that correspond to non-
concurrent pairs of tasks. The algorithm introduces edge
(xij , xik) if tasks j and k are concurrent and pair (j, k)
belongs to set D. It labels the graph nodes with 0 and 1.
The initial label 1 is assigned to the nodes which belong to
set {xij |(i, j) /∈ DM , i, j = 1, ..., n, i < j} of the Boolean
variables that correspond to the non-concurrent task pairs not
included in set DM . If an edge connects two variables xij and
xjk that satisfy constraint i < j < k, it is labeled +, otherwise
it’s labeled -. Labeling two variables and the edge connecting
them creates one type of conflict if the variable labels are the
same and the edge label is +, or the variable labels are different
and the edge label is -. If the graph has at least one of this first
type of conflict, equation (5) has no solution. For variables xij ,
xik, and xkj where i < k < j, a second type of conflict occurs
if variable xij‘s value equals 0 (1) and the values of xik and
xkj equal 1 (0). If the graph has at least one such conflict,
equation (6) has no solution. To generate a net schedule, the
algorithm must label the nodes in such a way as to avoid the
conflicts of both types.

Removing nine pairs from D updates matrix Qx
D (Figure 6)

in such a way as to satisfy equations (5)-(7). Figures 7 and

Figure 5. Conflicts graph Gx
D for logical equation L1

8 show the updated clique sets VD and UD . The concurrent
schedule execution time has increased from 340 ms to 380 ms.

Figure 6. Updated matrix Qx
D

VII. RESULTS
We have used the proposed model and technique of optimiz-

ing the concurrency level of network schedules as the basis of
a graph language and a tool for development and execution of
network algorithms. The graph vertices correspond to tasks.
The graph edges correspond to data dependences between
the tasks, and correspond to a control flow that implements
constraints on resources. Tokens mark edges of the graph. The
graph operates over firing vertices and moving tokens from
input to output edges. The vertex firing can be conditional and
cyclic, thus representing the behavior of all type of control
structures in concurrent algorithms. The optimization of the
concurrency level of a network schedule changes algorithm
graph by adding or removing edges and tokens. Such a pro-
cedure of transformation is capable of taking into account the
amount of available computational resources, while preserving
the mapping of the input data onto the output data.

VIII. CONCLUSION
This paper has represented the concurrency level of a com-

puting network schedule in an artificial intelligence system with

227



Figure 7. Updated clique set VD for matrix Qx
D

Figure 8. Updated clique set UD for matrix Qx
D

a set of pairs of tasks executed in parallel. We have estimated
the execution time and implementation cost of the schedule
over the clique set of the concurrency graph and over the
clique set of the complement graph. Our optimization algorithm
minimizes either the schedule execution time or resources. It
finds the optimal concurrency level of network computations by
solving the schedule existence problem at each step of updating
the set of pairs of concurrent tasks.

REFERENCES

[1] Ben-Nun, T. Demystifying Parallel and Distributed Deep Learn-
ing: An In-Depth Concurrency Analysis / T. Ben-Nun, T. Hoefler
// ETH Zurich, Department of Computer Science, Zürich. – 2018,
8006, Switzerland, pp. 1-47.

[2] Lee, W-P. Designing a parallel evolutionary algorithm for infer-
ring gene networks on the cloud computing environment / W-P.
Lee, Y-T. Hsiao, W-C. Hwang // BMC Syst Biol. – 2014, Vol. 8,
No. 5, doi:10.1186/1752-0509-8-5.

[3] Qiao, S. A. Fast Parallel Community Discovery Model on Com-
plex Networks Through Approximate Optimization / S. Qiao, N.
Han, Y. Gao, R-H. Li, J. Huang, J. Guo, L. A. Gutierrez, X. Wu
// IEEE Trans. On Knowledge and Data Eng. – 2018, Vol.30, No.
9, pp. 1638-1651.

[4] Lattanzi, S. Distributed Graph Algorithmics: Theory and Practice
/ S. Lattanzi, V. Mirrokni. // Proc. Eighth ACM Int. Conf. on
Web Search and Data Mining – WSDM’15, Shanghai, China,
2015, pp. 419-420.

[5] Sakr, S. Large-Scale graph processing using Apache Giraph / S.
Sakr, F. M. Orakzai, I. Abdelaziz, Z. Khayyat. // Springer, 2016.
– 197 p.

[6] Khayyat, Z. Mizan: Optimizing Graph Mining in Large Parallel
Systems / Z. Khayyat, K. Awara, H. Jamjoom, A. Alonazi, D.
Williams, P. Kalnis // Proc. 8th ACM European Conference on
Computer Systems. – ACM, 2013 pp. 169-182.

[7] Prihozhy, A. A. Analysis, transformation and optimization for
high performance parallel computing / A. A. Prihozhy. – Minsk
: BNTU, 2019. – 229 p.

[8] Prihozhy, A. Techniques for optimization of net algorithms / A.
Prihozhy, D. Mlynek, M. Solomennik, M. Mattavelli // Proc. Int.
Conf. PARELEC’2002. – IEEE CS, Los Alamitos, California,
2002, pp.211-216.

[9] Prihozhy, A. Net scheduling in High-Level Synthesis / A. Pri-
hozhy // IEEE Design and Test of Computers, 1996, No.1, pp.26-
35.

Оптимизация уровня параллелизма
сетевых вычислений в системах

искусственного интеллекта
Прихожий А. А.

Последние достижения в системах искусственного интел-
лекта невозможны без использования распределенных вы-
числительных платформ. В статье рассматривается графовая
модель сетевых планов, а параметры планов оценивается
посредством клик на графах предшествования и распа-
раллеленности. Предлагается алгоритм пересчета клик при
изменении уровня параллелизма вычислений посредством
добавления или удаления ребра в графе. Для найденного
множества пар распараллеленных задач решается проблема
существования плана. Алгоритм распараллеливания мини-
мизирует либо время выполнения плана, либо используемые
ресурсы. Предлагаемые модель и алгоритм реализованы в
программном обеспечении.

Received 23.12.2019

228


