
Numerical conditioning of neural network
components in time series forecasting

Stanislav Sholtanyuk
the Department of Computer Applications and Systems
Faculty of Applied Mathematics and Computer Science

Belarusian State University
Minsk, Belarus

SSholtanyuk@bsu.by

Abstract—In this paper, an issue of stability of fully
connected neural network (perceptron), forecasting time
series with sliding window method, is considered. A task
of finding conditions, providing best results on accuracy
and stability, was set. To accomplish it, training of the
neural network with various sets of hyperparameters, such
as amount of neurons on input and hidden layers, as well
as activation function, has been performed. Training was
performed on modeled data, which have been perturbed
with unbiased normally distributed random variables with
various variance. Such training results as number of
conditioning of weight matrix between input and hidden
layers, number of conditioning of activation functions, as
well as statistics on retrospective forecasting absolut error,
have been shown. An approach for estimation of condition
number for some activation functions has been proposed.
Impact of activation function on accuracy and stability of
forecasting perceptron has been shown.

Keywords—time series forecasting, neural network, per-
ceptron, numerical conditioning, activation function

I. INTRODUCTION

Artificial neural networks are widely used in various
tasks, for example, pattern classification, speech recogni-
tion, decision making. Neural networks have also proved
themselves as powerful tool for time series forecasting
[1], [2]. There are plenty implementations and libraries
on various programming languages, which can build
neural networks with given architecture.

One of the modern researchers’ focus is on stability
and robustness of neural networks. There are different
approaches for understanding and considering of neu-
ral networks stability. For example, dynamical stability
(low sensitivity of the result to perturbations of input
data) and structural stability (insignificant error of output
in case of changes in numerical characteristics of the
neural network itself) are distinguished [3]. The most
vivid examples of neural networks instability appear in
pattern recognition with deep convolutional networks.
When training on certain dataset, these networks become
unable to classificate objects on noisy images, which
are indistinguishable from a human’s point of view,
but are completely different from a point of view of
neural nets [4], [5]. Techniques, using such vulnerabil-
ities of intelligence systems, called adversarial attacks.

Connection between existence of adversarial examples
and conditioning of weight matrices in neural networks
has been revealed and systemically considered in [6].
In [7], it’s also argued that stability of neural network
training is an analogue of identification whether specified
matrix is well- or ill-conditioned, besides, a measure of
stability of neural networks training has been proposed
for various applications and tasks in biometrics.

The aim of this paper is revealing the factors, which
have impact on dynamical stability of neural networks in
forecasting time series. For this, an issue of conditioning
of neural nets and their components, calculation of con-
dition numbers and affecting these indicators on neural
network performance have been considered. Comparative
analysis of neural networks with different hyperparame-
ters sets has been performed as well.

II. ARCHITECTURE OF THE FORECASTING
PERCEPTRON AND ITS TRAINING

The object of study of this article is three-layered
perceptron with the following architecture:
• input layer contains arbitrary amount of neurons p.
p sequential values of standardized time series are
given to these p neurons;

• a hidden layer with arbitrary amount of neurons n;
• output layer contains the only neuron, where a

forecasted value for the next, (p + 1)th value, is
received;

• input and hidden layers also contain bias neurons;
• the neural network is fully connected, i.e. all neu-

rons on every layer connected with all neurons on
the next layer.

Forecasting perceptron works with standardized time
series, which is calculated by the following formula:

x̃i =
xi − xmin

xmax − xmin
, i = 1, N, (1)

where xi is i-th value of the initial time series, N ∈ N –
length of the time series, xmin and xmax – minimal and
maximal values of the time series respectively. Values of
the standardized time series {x̃i}Ni=1 lie between 0 and

273



1. To obtain final result of forecasting, the output value
should be processed with inverse transformation:

y = ỹ(xmax − xmin) + xmin. (2)

On every neuron of the hidden layer, an activation
function is acting. In this article the following activation
functions are considered:
• rectifier linear unit (ReLU):

ReLU(x) = max(0, x); (3)

• leaky rectifier linear unit (LeakyReLU, or LReLU):

LeakyReLU(x) =

{
αx, x < 0,

x, x ≥ 0,
(4)

where α << 1 - parameter, preventing from van-
ishing gradient problem [8];

• softplus, which can also decrease the affect of
vanishing gradient problem [9]:

soltplus(x) = ln(1 + ex). (5)

The perceptron is trained on the dataset, being
obtained with sliding window method, i.e. vectors
~xj = (x̃j , x̃j+1, ..., x̃j+p−1) with their expected outputs
x̃j+p, j = 1, N − p represent the training set. After
the training, predicting of future values of considered
time series is possible, for example, one can give vector
(x̃N−p+1, x̃N−p+2, ..., x̃N ) to the input of the neural net
in order to obtain an estimation for x̃N+1.

III. CONDITIONING OF THE NEURAL NETWORK

The forecasting perceptron can be considered as a
vector operator N : Rp,1 → R. One of the measures
of vector and matrix operators stability is number of
conditioning. For a non-degenerate operator A can be
calculated as follows:

condA = ‖A‖
∥∥A−1∥∥ , (6)

where ‖·‖ is operator norm, induced by Euclidean vector

norm ‖~x‖2 =

√
p∑
i=1

x2i , i.e.

‖A‖ = sup
‖~x‖6=0

‖A~x‖2
‖~x‖2

. (7)

Operator N can be decomposed into the following
operators Ni, i = 1, 7:
• standardizing of the initial vector ~a ∈ Rp,1 with

formula (1):

N1 : Rp,1 → Rp,1,

N1(~a) =
1

xmax − xmin
~a− xmin

xmax − xmin
~e,

(8)

where ~e = (1, 1, ..., 1︸ ︷︷ ︸
p

)
T ;

• left multiplicating received vector by weight matrix
A1 ∈ Rn,p, whose element on i-th row, j-th column
is equal to weight of the synapse, connecting i-th
neuron on the input layer with j-th neuron on the
hidden layer:

N2 : Rp,1 → Rn,1, N2(~a) = A1~a;

• adding received vector to bias vector ~b1 ∈ Rn,1,
whose i-th component is equal to weight of the
synapse, connecting i-th bias neuron on the input
layer with i-th regular neuron on the hidden layer:

N3 : Rn,1 → Rn,1, N3(~a) = ~a+~b1;

• activation function, acting on every neuron of the
hidden layer:

N4 : Rn,1 → Rn,1, N4(~a) = (act(a1), ..., act(ap))
T
,

where act – one of the activation functions (3)-(5);
• left multiplicating received vector by weight matrix
A2 ∈ R1,n, whose element on i-th row is equal to
weight of the synapse, connecting i-th neuron on the
hidden layer with the neuron on the output layer:

N5 : Rn,1 → R, N5(~a) = A2~a;

• adding to weight b of the synapse between the bias
neuron on hidden layer and the neuron on the output
layer:

N6 : R→ R, N6(a) = a+ b;

• inverse of the standardizing transformation with
formula (2):

N7 : R→ R, N7(a) = a(xmax − xmin) + xmin.

Number of conditioning of the operator N can be
estimated from above with multiplication of condition
numbers of Ni, i = 1, 7 according to submultiplicativity
of the norm (7):

condN ≤
7∏
i=1

condNi.

Thus, conditioning of the whole neural network de-
pends on conditioning of its components, such as weight
matrices, activation functions, as well as on prepro-
cessing data techniques, being used before training. By
estimating of condition numbers for these operators, we
can judge conditioning of the neural network in general.

Let us estimate condition numbers of the operators
Ni, i = 1, 7. Initially, it can be proved, that condN1 =
1. For proving, the following formula will be used [10]:

cond f = sup
‖~a‖6=0

‖J‖
‖f(~a)‖/‖~a‖

, (9)

where J is Jacobian matrix for function f , and matrix
norm ‖J‖ is induced by the vector norm from the same

274



Table I
STABILITY INDICATORS OF THE FORECASTING PERCEPTRON IN DEPENDANCE ON ACTIVATION FUNCTION AND STANDARD DEVIATION OF

PERTURBATIONS IN INPUT DATA

Standard deviation Mean estimation of Mean estimation Mean of norm of absolute Standard deviation
of perturbations condition number of A1 of condition number forecasting error w.r.t. of norm of absolute

of activation function the input series forecasting error
w.r.t. the input series

ReLU LReLU sp ReLU LReLU sp ReLU LReLU sp ReLU LReLU sp
0 1.58 1.70 1.75 2.08 1.56 0.37 588 602 749 237 191 322
1 1.63 1.67 1.71 2.13 1.52 0.37 582 607 786 215 252 474
5 1.65 1.65 1.70 2.00 1.54 0.37 647 643 787 235 239 351

10 1.66 1.67 1.71 1.94 1.50 0.37 692 743 927 202 250 482
50 1.66 1.70 1.70 1.95 1.56 0.37 1975 2018 2398 231 347 733

100 1.65 1.74 1.71 1.94 1.55 0.37 3583 3623 4116 266 302 916
500 1.63 1.79 1.74 1.86 1.51 0.35 16915 17052 18236 623 751 2416

formula. For function from formula (8), matrix J is equal
to


1

xmax−xmin
0 · · · 0

0 1
xmax−xmin

· · · 0
...

...
. . .

...
0 0 · · · 1

xmax−xmin

 ,

and its norm is 1
xmax−xmin

. After substitution into (9) we
got

condN1 = sup
‖~a‖6=0

‖J‖
‖N1(~a)‖/‖~a‖

=
1

xmax − xmin
×

× sup
‖~a‖6=0

‖~a‖
‖N1(~a)‖

=
1

xmax − xmin

∥∥N−11

∥∥ . (10)

Similary, for operator N−11 (~a) = (xmax − xmin)~a +
xmin we got

condN−11 = (xmax − xmin) ‖N1‖ . (11)

Multiplication of (10) and (11) with taking into ac-
count (6) leads to the identity ‖N1‖

∥∥N−11

∥∥ = 1, whence
follows that condition number of operator N1 is equal to
1. condNi = 1 for i = 3, 6, 7 is proved in the same way.

For operators N2, N5 condition numbers are equal to
condition numbers of matrices A1 and A2 respectively,
besides, condA2 = 1, as far as the matrix A2 ∈ R1,n

has only one singular number, i.e. such ς that ∃~u,~v :
A2~v = ς~u ∧AT2 ~u = ς~v. Estimation of condition number
for matrix A1 was performed after forecasting perceptron
training with various hyperparameters and training data.

As regards operator N4, its Jacobian matrix is diago-
nal, hence, the matrix norm, induced by Euclidean vector
norm, is equal to maximum among absolute values of
diagonal elements. For functions ReLU and LeakyReLU
‖J‖ = 1, because ReLU′(x) = LeakyReLU′(x) = 1
for positive x, and ReLU′(x) = 0, LeakyReLU′(x) =
α << 1 for negative x. In case of using softplus function
the following estimation is taking place:

‖J‖ ≤ sup
x

softplus′(x) =

= sup
x

(ln(1 + ex))
′
= sup

x

ex

1 + ex
= 1.

By using (9), we got

condN4 = sup
‖~a‖6=0

‖J‖
‖N4(~a)‖/‖~a‖

≤

≤ sup
‖~a‖6=0

‖~a‖
‖N4(~a)‖

. (12)

IV. COMPUTATIONAL EXPERIMENT AND ITS RESULTS

Testing of the forecasting perceptron was performed
on the examples of time series ~x = (x1, x2, ..., xN ),
modeled with the following formula:

xt = tα + β sin γt, t = 1, N.

Time series ~xj = ~x + ~ξj , j = 1, Q, where ~ξj =
(ξj1, ξ

j
2, ..., ξ

j
N ), ξjt ∈ N(0, σ2

j ) are random variables with
unbiased normal distribution with variance σ2

j , were also
considered. Training of the forecasting perceptron was
carried out with various values of p, n, as well as various
activation functions (3)-(5) for 7 epochs. An optimization
algorithm, called AdaGrad (adaptive gradient algorithm)
[11], which has shown the best results on stability of
the neural network [12], was used. Condition numbers of
activation functions were estimated according to formula
(12), where components of the vector ~a are equal to
values on inputs of neurons on the hidden layer, and
vector N4(~a) consists of values outputs of the same
neurons.

During the experiment neural networks with different
architectures have shown approximately equal results
on stability and conditioning. Forecasting perceptron
performance for N = 1000, α = 1.2, β = 100, γ =
0.05, Q = 60 in dependance on standard deviations
σj and an activation function is shown on the I. As

275



this table shows, when using activation function ReLU,
matrix A1 has lower condition number, then with other
considred activation functions. What about LeakyReLU
and softplus, the first function gives lower condition
number of A1, when perturbations in input data have
standard deviation σ, not exceeding 10, and the second
one – when σ ≥ 100. In case σ = 50 both functions
give approximately equal condition numbers of A1. On
the contrary, for the operator N4, ReLU gives the highest
condition number, and softplus gives the lowest one,
moreover, when using ReLU, increasing of standard
deviation of perturbations in input data leads to condition
number decreasing, which can be explained with the
aforementioned issue of vanishing gradient. The best
results on accuracy and stability have been obtained with
using ReLU function.

V. CONCLUSIONS AND FURTHER RESEARCH

Results of the forecasting perceptron training evi-
dence that ReLU function is the most suitable as ac-
tivation function in the neural network. Compared with
LeakyReLU and softplus functions, ReLU has given bet-
ter conditioning of weight matrix, as well as better accu-
racy and stability of retrospective time series forecasting.
These results, however, don’t correlate neither matrix A1

conditioning nor activation functions conditioning. Thus,
accuracy and stability of the forecasting perceptron don’t
directly depend on conditioning of its components.

In further researches, stability of the forecasting per-
ceptron in sense of numerical conditioning will be con-
sidered. For exploring this problem, theoretical esti-
mation of condition number of activation functions is
necessary, as well as considering of factors, affecting
on weight matrices and their conditioning, for example,
weight initialization methods.

REFERENCES

[1] L. S. Maciel, R. Ballini. Design a Neural Network for Time
Series Financial Forecasting: Accuracy and Robustness Analysis.
Anales do 9º Encontro Brasileiro de Finanças, 2008. Availaible
at: https://www.cse.unr.edu/~harryt/CS773C/Project/895-1697-1-
PB.pdf (accessed 2019, December)

[2] L. Falat, Z. Stanikova, M. Durisova, B. Holkova, T. Potkanova.
Application of Neural Network Models in Modelling Economic
Time Series with Non-Constant Volatility. Business Economics
and Management Conference, 2015, pp. 600-607

[3] B. Sengupta, K. J. Friston. How Robust are Deep Neural Net-
works? arXiv preprint arXiv:1804.11313, 2018.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.
J. Goodfellow, R. Fergus. Intriguing properties of neural net-
works. International Conference on Learning Representations,
arXiv:1312.6199, 2014

[5] I. J. Goodfellow, J. Shlens, C. Szegedy. Explaining and Harness-
ing Adversarial Examples. International Conference on Learning
Representations, arXiv:1412.6572, 2015.

[6] M. Singh, A. Sinha, B. Krishnamurthy. Neural Networks in
Adversarial Setting and Ill-Conditioned Weight Space. arXiv
preprint arXiv:1801.00905, 2018.

[7] S. V. Kachalin. Otsenka Ustoichivosti Algoritmov Obucheniya
Bol”shikh Iskusstvennykh Neironnykh Setei Biometricheskikh
Prilozhenii [Assessment of Stability Learning Algorithms Large
Artificial Neural Networks of Biometric Application]. Vestnik
SibGAU [SibSAU Bulletin], 2014, no. 3, pp. 68-72.

[8] A. L. Maas, A. Y. Hannun, A. Y. Ng. Rectifer Nonlinearities
Improve Neural Network Acoustic Models. International Con-
ference on Machine Learning, 2013.

[9] H. Zheng, Z. Yang, W.-J. Liu, J. Liang, Y. Li. Improv-
ing Deep Neural Networks Using Softplus Units. Interna-
tional Joint Conference on Neural Networks, 2015. Available
at https://www.researchgate.net/publication/30886346 (accessed
2019, December).

[10] L. N. Trefethen, D. Bau. Numerical Linear Algebra, Philadelphia,
Society for Industrial and Applied Mathematics, 1997, 390 p.

[11] J. Duchi, E. Hazan, Y. Singer. Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization. Journal of Machine
Learning Research, 2011, vol. 12, pp. 2121-2159.

[12] S. Sholtanyuk. Sravnitel’nyi analiz neirosetevoi i regression-
nykh modelei prognozirovaniya vremennykh ryadov [Compar-
ative Analysis of Neural Networking and Regression Models
for Time Series Forecasting]. Tsifrovaya transformatsiya [Digital
Transformation], 2019, no. 2, pp. 60-68.

Обусловленность компонентов нейронной
сети в задачах прогнозирования

временных рядов
Шолтанюк С.В.

В данной работе рассмотрен вопрос устойчивости пол-
носвязной нейронной сети (персептрона), прогнозирующей
временные ряды методом скользящего окна. Поставлена
задача нахождения условий, обеспечивающих лучшие ре-
зультаты по точности и устойчивости, для чего было про-
ведено обучение нейронной сети при различных наборах
гиперпараметров, таких как количество нейронов на входном
и скрытом слоях, а также функция активации. Обучение
проводилось для смоделированных данных, которые под-
вергались зашумлению несмещёнными нормально распреде-
лёнными случайными величинами с различной дисперсией.
Представлены такие результаты обучения нейронной сети,
как число обусловленности матрицы весов между входным
и скрытым слоями, число обусловленности функций акти-
вации, а также статистические характеристики абсолютной
погрешности ретроспективного прогноза.Предложенподход
к оцениванию числа обусловленности некоторых функций
активации, использующихся при решении задач прогнози-
рования. Показано влияние выбора функции активации на
точность и устойчивость прогностического персептрона.

Received 29.12.19

276


