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Abstract—The purpose of the work, that is presented in this pa-
per, is to develop a method for adaptive control of a technological
production cycle based on a software and hardware system that
includes indicators of the hardware units states, parameters of the
technological production cycle operation, simulation model of the
probabilistic technological process and a built-in decision-making
system. Operational interaction of the software and hardware
system components and construction of the feedback control
connections is implemented through the control parameters and
variables of the simulation model based on the output of the
neuroregulator model. To address the described problem, tasks
related to implementation of the neural network technologies
when constructing architecture and mathematical model of the
neuroregulator were solved. The mathematical model of the
neuroregulator is based on parameters of operation of the
physical prototype, construction of the feedback connections for
the real-time control (adaptive control) is based on the procedure
of training of a recurrent neural network that includes LSTM-
cells. Considering the testing results is was found out that
recurrent neural networks with LSTM-cells can be successfully
used as an approximator of the Q-function for the given problem
in the conditions when the observable region of the system states
has complex structure.

Index Terms—technological production process, parameters of
operation, probabilistic network chart, state indicators, methods
of adaptive control, neural network, LSTM, Q-learning

I. INTRODUCTION

The modern analysis of the research in the field of con-
trolled production systems demonstrates that the problem of
determining the parameters of real-time operation for such
objects of study arises primarily in the cases when they involve
production of complex technical items, which require precision
of production methods and high labor productivity.

During that process a multi-criteria control optimization
problem is considered. It sets strict requirements for quality
and algorithmic execution of the production process, mini-
mization of the human factor effects on the implementation
quality of the technological production cycle, prevention of
the occurrence of technogenic emergencies. Such situation is
specific for the robotic production systems, that operate under
control of software and hardware controllers, which administer
the operation of the technological cycle control system in
accordance with the implemented programs.

However, the occurrence of emergency situations due to
hardware failures, random external control influences, includ-
ing the human factor, leads to deviation of the operation
parameters of the production system from the intended values.
This leads to the necessity of adjustment of the control
parameters in real-time, based on the neuroregulator models
that operate within the means of software and hardware pairing
with the technological production cycle.

The formalization of the control structure for technological
production cycle is based on the research results in the field
of the analysis of operation of probabilistic technological
systems, that include a technological production process as
a controlled object. The technological production process is
characterized by a relatively slow speed of performance of
technological operations, which are interconnected within the
cycle, and it’s structure is defined by a simulation model of
the probabilistic network chart[1][2].

Special AI models such as artificial neural networks
(ANNs) have unique qualities, can be used as universal
approximators[3], and were able to produce in the recent years
a variety of impressive results in different kinds of control
tasks[4][5][6], including complex decision-making tasks[7][8],
and being able to reach human level performance in some of
them[9][10].

While the idea of applying ANNs to the control problems
is not new[11][12][13][14], some of the recent interesting
developments in the field are related to implementation of
deep reinforcement learning methods[5]. The possibilities of
application of such methods to the considered problem of
constructing an effective controller model for the technological
production process are explored in this paper.

II. PARAMETERS, STATISTICS AND RESPONSES OF THE
CONTROL OF TECHNOLOGICAL PRODUCTION PROCESS

Operational interaction of the system components and the
technological production cycle that operates in real-time is
carried out based on constant monitoring of the hardware
unit states and the control parameters through the registers-
indicators and special technical pairing means.

The system of software and hardware pairing for the oper-
ational control for the technological production cycle consists
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of a simulation model of the technological production process,
which has a structure defined by a probabilistic network chart;
a specialized decision making system, which performs analysis
and control of the current developments in the operating
environment of the technological production cycle; a control
block, that is used as a mediator between the decision making
system and the neuroregulator model. The scheme of the
system is shown in Fig.1.

Figure 1. Scheme of the software and hardware system for the operational
control in the described formalization.

Operational interaction of the system components is imple-
mented through the parameters and variables of the simulation
model of the control system: reliability characteristics for
the hardware units operation G∗rh; indicators of the current
hardware units states ind∗rh, that accumulate each unit’s time
before failure; indicators of the emergency occurrences due to
hardware failure π∗abrh, that have effect on the configuration
of the technological cycle and the control system; current
values U∗fh of the variables for the control of the technological
process; values of the control variables adjustments ∆U∗fh
that are based on the output of the neuroregulator model;
parameters of the operational conditional of the technological
process Z∗fh, that depend on the values of the control variables
U∗fh. The decision making system sends three types of signals
to the hardware and the control registers of the technological
process: corrective adjustments ∆U∗fh for the control variables
of the technological production process; signals α∗rh that
allow to switch to the backup hardware or signals to initiate
maintenance or repairs for hardware units.

III. FEATURES OF THE TECHNOLOGICAL PROCESS
CONTROL STRUCTURE BASED ON A NEUROREGULATOR

MODEL

In this section the technological and operational control of
the simulation model is described, as well as the features of
the control structure. For the implementation of the simulation
model in the described formalization, the following parameters
are used:

• number of hardware units N ;
• list of the K operation stages of the technological process,

that consists of pairs (tk, {R(Mik}), where tk is duration
of the stage, R(Mik) - acceptable mode of operation for
the i-th unit at this stage;

• maximum number of the possible simultaneous mainte-
nance jobs for the hardware units S;

• reliability characteristics for the hardware units operation
G∗rh, which include:

1) distributions for the duration of operation till failure
for the i-th hardware unit Fir(twf ) in the operation
mode R(Mi);

2) distributions for the duration of the required mainte-
nance (repairs) of the i-th hardware unit in the event
of failure Fif (tr);

3) distributions for the duration of the liquidation of
the emergency due to failure of the i-th hardware
unit Fife(tre);

4) probabilities of the emergency occurrence due to
failure of the i-th hardware unit Pie.

The simulation model operates during the given time inter-
val, restarting the production cycle and carrying on before each
start the maintenance actions if necessary. In order to make a
decision if such actions are necessary, a neuroregulator model
is used, which operates based on the current environment state
data.

IV. PROCEDURE OF NEUROREGULATOR GENERATION

When solving this task a group of reinforcement learning
algorithms, and particularly Q-learning, is interesting to con-
sider as a basis for the method to determine the optimal control
strategy that has feedback connections and takes into account
the complex structure of the space of available actions.

Reinforcement learning algorithms assume implementation
of an agent capable of observing the environment and manip-
ulating it with actions, as well as the mechanism of numerical
evaluation of agent’s performance - the reward function[15].
When training a controller for the agent during the reinforce-
ment learning process, an exploration process is involved in
order to determine the agent’s actions that lead to the highest
rewards. Such approaches have a potential to train a controller
capable of implementing the optimal strategy.

In this paper reinforcement learning (Q-learning) is used to
train a neuroregulator capable of forming a set of maintenance
recommendations for the technological production cycle at
each point of time.

During the model training the values of the reward function
are calculated according to the following rules during each
"maintenance-cycle" procedure:
• r = 0
• r = r − REW_REPAIR_COST – penalty for each

maintenance (repairs), initiated due to the agent’s decision
during the maintenance stage of the given iteration;

• r = r − REW_FAILURE_COST – penalty for each
hardware unit failure that happened during the cycle stage
of the given iteration;
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In the case of emergency that happened as a result of a
hardware unit failure:
• r = r−REW_EMERGENCY _COST – penalty for

the emergency that as caused by one of the hardware
units failure during the cycle stage of the given iteration.

It is presumed that the penalty value
REW_REPAIR_COST is significantly less than
the values for REW_FAILURE_COST and
REW_EMERGENCY _COST , so that the action of
the hardware unit maintenance is more preferable than the
situation when the unit fails during the cycle, causing the
cycle to stop and possibly causing an emergency. On the
other hand, this value is non-zero because the maintenance
procedure consumes resources and time and should be used
only when necessary.

The choice of the specific numerical values for the pa-
rameters of the reward function with regard to the practical
requirements for the reliability and cost reduction will have
effect on the action selection policy of the agent learned during
training. For example shaping the reward function with usage
of the calculated cost values may result in agent learning to
prefer lower maintenance costs at the expense of higher failure
rates.

The idea of Q-learning is to train the agent’s controller to
approximate Q∗ - the function that estimates reward values
for the next environment state as a result of the chosen
control actions[16][17]. A neural network can be used as an
approximator for that function. In this case the training task is
to find such values of the trainable parameters of the network,
so that the approximate function Q is close enough to the
optimal function Q∗ and therefore the determined policy of
action selection π is close enough to being optimal[9]:

Q(s, a) ≈ Q∗(s, a) = max
π

E [Rt|st = s, at = a] (1)

And Bellman equation is true for Q∗:

Q∗(s, a) = E(r + γmax
a′

Q∗(s′, a′)|s, a) (2)

When solving complex real-world problems, the agent often
has the whole information about the environment unavailable.
In this case the agent that operates based upon a Q approxima-
tor calculating values depending only on the current observable
environment state may be inefficient when the environment
structure has high complexity or is of temporal nature and
involves processes, both dependent and independent of the
agent’s actions. In the described situation it is necessary to
use some mechanism of memory for the agent. A recurrent
neural network with a hidden state preserved across multiple
iterations can be used for such purpose[7][18]. LSTM-cells
as a structural component of the neural network architecture
allow the network to approximate temporal dependencies
stretched over long periods of time[19].

Therefore the neural network model choice for the problem
in the described formalization:

DQRN1 – agent that uses a recurrent neural network based
on the multi-layer perceptron architecture with LSTM-cells.
The current environment state is feed to the network input.

Neural network structure:
1) Dense x16 ReLU;
2) Dense x16 ReLU;
3) Dense x32 ReLU;
4) LSTM x32 ReLU;
5) Dense x6 no activation.
The input vector of the network is formed at each point of

time based on values of the indicators ind∗rh of the current
state of the hardware units.

The output vector of the network has dimension N + 1.
The values of the elements of the output vector define a set
of maintenance recommendations for the N hardware units.
In case value of an element exceeds some given threshold
level, it is considered that the model recommends to perform
maintenance of the corresponding hardware unit. In case the
last element’s value exceeds the threshold, it is considered that
the model recommends not to perform any maintenance at this
time.

Based on the values of the elements of the output vector of
the model, the signals for performing the maintenance (repairs)
for the corresponding hardware units α∗rh are determined.

To implement model training based on Q-learning algo-
rithm, a custom environment was developed that includes
a simulation model of a technological process in the given
formalization. The environment was written in Python lan-
guage, using simpy library for simulations, tensorflow and
keras libraries for the neurocontroller model.

In this paper experience replay was used during training[9]
- the biologically inspired mechanism to select randomly and
demonstrate during training the previous experience of agent’s
interactions with the environment. The updates of the Q values
were performed after each run of a simulation based on all the
saved experiences. The neural network is trained on sequences
of 16 timesteps.

Training procedure:
1) Agent acts during a single simulation run (multiple runs

of the production cycle, determined by a set of K
stages during the given period of model time). The agent
receives the current observable state of the environment
and acts according to the chosen exploration strategy that
determines how the random actions are selected. In this
paper the softmax exploration strategy was used[15]:

pt(α
∗) =

exp(Qt(α
∗)/τ)∑

i exp(Qt(αi)/τ)
(3)

2) Experiences of agent’s interactions with the environment
are saved as sequences {(st; at; rt; st+1)} to memory.

3) The experiences to be used for the next update of the
trainable parameters of the neural network are sampled
from the memory. According to the selected training
parameters, these experiences are sampled party from
the whole memory randomly, and partly from the latest
sequences.

4) The updated Q values are calculated based on the follow-
ing observable states and rewards from the experiences:

Q(s, a∗) = r + γmax
a

Q(s, a) (4)
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5) The neural network is trained on a set of size 32 for 1
epoch using the RMSprop algorithm[20]. The trainable
parameters are updated after presenting each set of 4
sequences.

6) Go back to 1) and restart the simulation.
The training continues until the simulation number limit is

reached.

V. PARAMETERS OF THE SIMULATION MODEL USED IN THE
EXPERIMENTS

One cycle run under normal condition lasts for 48 ticks of
simulation time. One simulation run lasts for 64*48 = 3072
ticks of simulation time.

Number of hardware units:
N = 5
Modes of operation R(Mi):
operating/not operating – for all hardware units.
Number of maintenance jobs that can be performed simul-

taneously:
S = 3
K = 2 cycle stages:
{(4, (1, 0, 0, 0, 0)), (44, (1, 1, 1, 1, 1))}
First stage - operation of only the first hardware unit during

4 ticks of simulation time. The second stage - all of the units
operate for 44 ticks of simulation time.

Costs:
• CY CLE_NON_OPERATING_COST = 20 – non-

operation of a production process for one simulation tick;
• FAILURE_DURING_CY CLE_COST = 150 –

hardware unit failure during the operation of the cycle;
• EMERGENCY _DURING_CY CLE_COST =

1000 – emergency during the operation of the cycle
caused by a hardware unit failure.

Distributions and probabilities:
• distributions for the operation time before failure of the

i-th hardware unitFir(twf ):
1) uniform U(150; 200);
2) normal N(µ = 1000, σ2 = 250);
3) normal N(µ = 350, σ2 = 50);
4) uniform U(300; 500);
5) normal N(µ = 800, σ2 = 300).

• distributions for the duration of the required maintenance
(repairs) of the i-th hardware unit in the event of failure
Fif (tr):

1) uniform U(3; 5);
2) uniform U(2; 4);
3) uniform U(3; 6);
4) uniform U(5; 10);
5) uniform U(2; 3).

• probabilities of the emergency occurrence due to failure
of the i-th hardware unit Pie: {0.05; 0.25; 0.1; 0.01; 0.2}

• distributions for the duration of the liquidation of the
emergency due to failure of the i-th hardware unit
Fife(tre):

1) uniform U(10; 15);

2) uniform U(8; 10);
3) uniform U(5; 8);
4) uniform U(25; 35);
5) uniform U(4; 6).

Values for the reward parameters:
1) REW_FAILURE_PENALTY = 100.0
2) REW_EMERGENCY _PENALTY = 200.0
3) REW_REPAIR_PENALTY = 10.0

VI. TRAINING RESULTS

The model was trained as described above during the 2000
simulation runs.

Figure 2. Total agent’s reward for one simulation during training.

Figure 3. Total costs for running the technological cycle for one simulation
during training

Figure 4. Total number of repairs (in green) and cycle restarts (in blue) for
one simulation during training.

Figure 5. Total number of hardware failures (in blue) and emergencies (red)
for one simulation during training.

According to the statistics gathered during training the
following can be noticed:
• increase in the agent’s reward (Fig.2);
• tendency towards the decrease in costs for running the

cycle (Fig.3);
• decrease in the number of repairs for the hardware units

(Fig.4);
• tendency towards the decrease in the number of hardware

failures (Fig.5);
• increase in the average operation time for the cycle after

start (Fig.6);
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Figure 6. Average cycle operation time for one simulation during training.

Figure 7. Total cycle operation time for one simulation during training.

• increase in the total cycle operation time (Fig.7).
It is interesting to compare the performance of the model by

comparing it to some baseline models that do not implement
complex action selection policies like the trained model does.
The examples of such models can be a controller that never
recommends maintaining the hardware units (Baseline-Zero)
and a controller that implements random action selection
policy (Baseline-Random). On Fig.8 and Fig.9 histograms
for the distributions of costs and durations of normal cycle
operation are given for 5000 test runs of the simulation.

For Baseline-Zero median costs value is 19455.82, median
operation time - 2686.46. For Baseline-Random median costs
value is 18002.09 and median operation time is 2737.25.

The same histograms for DQRN1 agent are shown on
Fig.10. For this model the median costs value is 17115.98
and median operation time is 2697.59.

Figure 8. Histograms for the distributions of costs and cycle normal operation
time for the controller Baseline-Zero during testing.

It is particularly effective to use the software and hardware
system in the cases when time intervals τSOB between the
emergencies in the slowly operating technological process are
large enough to allow the operative control (τSOB > Tkph,
where Tkph - critical time of realization of the process, that
was estimated using the simulation model).

Another important purpose of the system is realization
of multiple series of simulation experiments implementing
Monte-Carlo methods in order to determine how the global

Figure 9. Histograms for the distributions of costs and cycle normal operation
time for the controller Baseline-Random during testing.

Figure 10. Histograms for the distributions of costs and cycle normal
operation time for the controller DQRN1 during testing.

variables Zfh(t0) and Ufh(t0) change with model time. Those
dependencies can be then used to compare the model values
to the real values: Zfh(t0) to Z∗fh(t) and Ufh(t0) to U∗fh(t)
, where t0 and t - respectively moments of model time and
moments of real time in the technological production cycle.

In case when for all the elements of these vectors the
absolute values of difference are within an acceptable error
margin (5)(6), the simulation model is considered to be ad-
equate in the dynamics of implementation of the control for
the technological production cycle using the neuroregulator
model. ∣∣Zfh(t0)− Z∗fh(t)

∣∣ < δ (5)

∣∣Ufh(t0)− U∗fh(t)
∣∣ < δ (6)

VII. CONCLUSION

The proposed technology of adaptive control for the tech-
nological cycle using the neuroregulator models allows:
• to chose a rational set of resources for the technological

cycle as well as a set of hardware units that will allow
a required level of hardware reliability for the normal
operation of the production process without emergencies;
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• operatively adjust the characteristics of realization of the
control process to reach the performance of the techno-
logical cycle within the acceptable margins of change for
the technological parameters;

• to address the problem of estimating the costs of im-
plementing the technological cycle with the given set of
resources and hardware available at the facility.
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УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМ ЦИКЛОМ
ПРОИЗВОДСТВА НА ОСНОВЕ МОДЕЛИ
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Цель работы, результаты которой представлены в
рамках данной статьи, состояла в разработке мето-
дики адаптивного управления технологическим цик-
лом производства на базе программно-аппаратной си-
стемы, содержащей индикаторы состояния оборудова-
ния, параметры функционирования технологического
цикла, имитационную модель вероятностного техно-
логического процесса и встроенную систему приня-
тия решений. Оперативное взаимодействие компонен-
тов программно-аппаратной системы и построение об-
ратных связей по управлению реализуется с помощью
параметров управления и переменных имитационной
модели на основе результатов работы модели нейроре-
гулятора. Для достижения поставленной цели были ре-
шены задачи, связанные с применением нейросетевых
технологий при построении архитектуры и математи-
ческой модели нейрорегулятора. При этом математи-
ческая модель нейрорегулятора разработана на основе
параметров функционирования физического прототи-
па, а построение обратных связей по управлению в
режиме реального времени (адаптивного управления)
основано на процедуре обучения рекуррентной нейрон-
ной сети, построенной с использованием LSTM-блоков.
С учетом полученных результатов установлено, что
рекуррентные сети с LSTM-модулями могут успешно
применяться в качестве аппроксиматора Q-функции
агента для решения поставленной задачи в условиях,
когда наблюдаемая область состояний системы имеет
сложную структуру.
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