
An approach to sheet music information
retrieval

Yulia Korukhova
Computational Mathematics and Cybernetics faculty

Lomonosov Moscow State University
Moscow, Russia
yulia@cs.msu.ru

Aiken Tolybayeva
Computational Mathematics and Cybernetics faculty

Lomonosov Moscow State University
Moscow, Russia

aikesha28@gmail.com

Abstract—The paper presents a sheet music retrieval
system. A search query is written in MusicXML format.
MusicXML is a very popular format for sheet music,
supported by various music notation software. With the
appearance of large electronic collections the problem of
music retrieval becomes particularly important. Known
information retrieval methods are not directly applicable
for this particular domain: the task differs from the
structured retrieval in texts because, for example, two sheet
music files with totally different symbolic content may
represent the same composition written in different keys
or arranged for different instruments.

Our search starts from a fragment containing a melody
or a part of a composition and the goal is to find the
whole composition in a digital collection. The collection
should be preliminary indexed and the index is stored as
database. For MusicXML files we propose a software tool
that performs indexing automatically. For other formats the
indexing process can be performed manually and database
is extended by means of SQL–queries. To perform a fuzzy
search we mark the longest common subsequence in the
query and index item and then to remove their differences
using automated reasoning method called rippling. The
appropriate rewriting rules and differences annotation tech-
niques for musical notation are implemented in prototype
sheet music retrieval system.

Keywords—music information retrieval, automated rea-
soning, rippling

I. INTRODUCTION

Nowadays with wide spread of networks, computers
and electronic devices, a lot of data, information and
knowledge is stored in electronic form for almost every
domain. That includes sheet music: many of that is
now presented in electronic collections1. Such collections
are often quite large and information retrieval tools are
required to work with them. In addition to traditional
search tools that are able to find an object by it’s name
and/or it’s author the retrieval of a piece that contains a
given fragment is required. This task has been solved for
audio fragments in Shazam application2, for humming

1MuseScore sheet music library and editor https://musescore.com
(accessed 2019, Dec), Petrucci Music Library, https://imslp.org (ac-
cessed 2019, Dec) , НотоМания, http://www.notomania.ru (accessed
2019, Dec)

2Shazam acoustic fingerprint music search system
https://www.shazam.com/ru (accessed 2019, Dec)

queries and melody fragments in Musipedia [1]. However
the search of given sheet music corresponding to a
fragment is still a challenging task. From one point
of view it is similar to information retrieval for texts,
but it has several specific issues. First of all, there
is no strict analogy with words in texts, that can be
determined syntactically. Also the same music piece can
have different symbolic representations, being transposed
or arranged for another instrument. In this paper we
are presenting a context-based approach to sheet music
retrieval.

The paper is organized as follows: first we describe
a task of music scores information retrieval, next will
discuss an appropriate internal representation, that con-
sider the particular features of the domain, then will
pass to index organization. Next we describe our search
algorithm and give a short example of it’s work. Finally
the conclusions are drawn.

II. MUSIC SCORES RETRIEVAL TASK

As an input data we take a music score fragment,
written in MusicXML format [2]. This format has been
chosen because it is widely supported, it can be used in
more than 150 applications [2] including music notation
software like MuseScore3, Finale4, Guitar Pro5 etc. We
search for the given fragment in indexed music library.
The digital music score library can contain sheet music
of any kind and in any form, however it has to be
preliminary indexed. As an example in this work we
take a test library of MusicXML files and present a
software tool that performs indexing automatically. As a
search result we expect a list of music scores, containing
the given fragment or similar to it. In the case the
search query is not presented in our index, we propose
to change it by a set of rewriting rules, that can help
to correct automatically some possible misprinting. A
special measure is introduced to estimate the similarity

3MuseScore sheet music library and editor https://musescore.com
(accessed 2019, Dec)

4Finale, https://www.finalemusic.com (accessed 2019, Dec)
5Guitar Pro, https://www.guitar-pro.com (accessed 2019, Dec)

341

https://musescore.com
https://imslp.org
http://www.notomania.ru
https://www.shazam.com/ru
https://musescore.com
https://www.finalemusic.com
https://www.guitar-pro.com


between the search query and a fragment from index. It
takes into account the number of differences between
fragments and the number of rules, that have been
applied to remove differences between the search query
and a fragment from index.

III. INTERNAL REPRESENTATION

To solve a problem with different symbolic repre-
sentation of transposed music fragments or played in
different tempos we use normalized representation. Each
note is presented as a pair of two numbers (relative pitch,
relative duration), the same approach is used in [5], [6].
Relative pitch is computed as a distance in tones from
the previous note in the melody. Relative duration for
the notes are calculated as relation to the previous note.
The particular problem of this representation that it is
not valid for chords. We propose to select one note of
chord. The relative duration for pauses are calculated as
relation to the previous pause duration or to the previous
note duration if there is no previous pause.

IV. INDEXING OF SHEET MUSIC COLLECTION

The indexing of music files is a challenging task, be-
cause it is difficult to formalize the process of splitting a
composition into melodies for building a dictionary. The
automatic discovering logically finished part of melody is
a process that is difficult to automate. Usually the search
query is much shorter than a full music piece that’s why
we put in our index short fragments corresponding to
a period (8 bars) and its parts (4, 2 bars) taken from
the score. The obtained fragments are translated into
normalized representation and duplicates are not added
to the index. For each of the fragments we have a list of
compositions in which it occurs.

We propose to organize index as a database imple-
mented on PosgreSQL [3]. That allows us to use the
benefits of this database management system: to perform
effective search, and also that give other potential users
a possibility to add new items to index by writing SQL–
queries either manually or by some external software.
In this work the special software tool is developed for
automatic indexing of MusicXML files. The program was
written on Python and stored as an auxiliary module.
However indexing can be performed for other formats
manually or using external software and new content is
added to PosgreSQL database – index by means of SQL-
queries.

V. MUSIC RETRIEVAL ALGORITHM

In the our sheet music retrieval system we have to
perform fuzzy search. We use an approach based on
rippling [5], and continue and extend the ideas proposed
in [6], [12]. In the information retrieval we are faced
with the situation than we have two similar (but not
identic) fragments: a search query and a candidate to
be an answer. We need to find if they represent the same

composition. This task is quite similar to a mathematical
one: while performing mathematical induction proof we
have a hypothesis and a goal that are syntactically
similar, and we need to rewrite the goal to prove that
it is implied by the given. To solve the problem we
can use rippling, previously proposed as an heuristic for
automation of mathematical induction method [5]. The
precondition for using the method is the following: we
are rewriting one sentence to another and the sentences
have to be similar. The differences are annotated as a
wave front and the common parts form a skeleton. We
do rewriting of the goal to reduce differences and the
skeleton has to be preserved. To estimate differences
reduction a measure is proposed. It has to become smaller
with every rewriting step and it equals 0 when all the
differences are removed. We extend the application of
this approach from mathematical formulas to a new
domain – a sheet music fragments. For this we have to
introduce:

• a set of wave rules for musical domain;
• a measure to estimate differences between musical

fragments;
• a proof that each of wave rules reduces the number

of differences according to the proposed measure.
In this work we introduce a set of wave rules (extended
version of [6], [12]. Differences are estimated as number
of notes in wave front and each wave rule rewrites
fragments reducing differences.

The work of our search engine consist of several steps:
1) Get a search query in MusicXML format.

2) Translate a query into internal normalized repre-
sentation

a) Remove pauses in the begining of the query

b) Relative duration of other pauses is calculated
based on previous note. The first note after
pauses is divided on the length of the previous
note.

342



3) Comparing the internal representation of the search
query with fragments from the index. Since we
are performing fuzzy search, for each pair (query
and database fragments) we perform the following
steps:

a) Marking the longest common sequence (LCS)
using the dynamic programming method [7].
If it is shorter than a half of the shortest
fragments, not considering them similar. Oth-
erwise mark all common notes as a skeleton
and others as a wave-front.

b) Deleting wave fronts in the beginning (prefix)
and in the end (suffix) of sequence.

The longest common subsequence is marked
after deleting prefix and suffix

c) Remove pauses after the final note in our
fragment.

d) Compare the fragments as they are build from
the same note.

e) Estimating the similarity using the formula

Similiriaty(F1, F2) =
2 · S

L1 + L2 + α ·N , (1)

where F1, F2 - compared fragments, S -
length of the longest common sequence, L1

- the length of fragment F1, L2 - the length
of F2,
α - heuristic coefficient, taken now as 0.5 af-
ter experiments with the system, N - number
of applied rules.

f) If the similarity is greater or equal 0.9, the
fragments are considered to be similar and
the resulted composition from the database
should be mentioned in the list of search
results.

Otherwise we are trying to remove differences using
wave rules from [6] and the set of rules is extended by
new ones. We use rules of three categories:

• Error correction rules.
The aim of the rule is correction of possible errors
made by user in the query, because it is written as
he had heard it. For example an error in intervals
like fifth, sixth and bigger user can make a mistake
writing a note half tone higher or lower. Such
differences in the border notes of the wave front can
be considered as an error made by user in a query
and they are proposed to be corrected by rewriting.

• Alternative notations.
The same musical fragment can be written and per-
formed in different ways, however the melody can
be considered the same. This happens in variations
and in different arrangements. The rules of this
category assume different placement of pauses and
elimination of non-chord notes.

• Elimination rules.
After applying the previously mentioned rules the
longest common sequence becomes longer. How-
ever the rippling method does not allow to change
skeleton. That is why the newly constructed com-
mon parts are removed from the sequence. Only the
notes that are at the border with the skeleton can be
removed by this rule.

Since we have many rules in our database we have
to avoid cycles in their applications. We propose to
use a measure, that should become smaller with every
rewriting step. We take a number of notes in the wave
front as such a measure. The rewriting process stops
in two situations; either the measure becomes equal 0,
or there are no applicable rules. So at every step of
rewriting we use only the rules that decreases measure
of the sentence and we avoid infinite loops. An example
of rule is presented here. A note (x,y), where x – pitch
and y – duration and a pause (y) directly after it can be
replaced by the same note with longer duration (x,2*y):

[. . . ](x,y)(y)[. . . ] ==> [. . . ](x,2*y)[. . . ]

After applying rules we calculate the similarity again
and make a decision about correspondence of the frag-
ment to the search query.

VI. EXAMPLE OF WORK

A short example of music retrieval performed by our
prototype system is presented in the Table I. The search
query is presented in line 9, among the library fragments
we have 9 similar ones. Their differences are reduced by
wave rules and the similarity is calculated using formula
(1) and shown in the right column.

343



Table I
RETRIEVAL RESULTS WITH ESTIMATION OF SIMILARITY

Query Result Similiriaty
9 1 0.81

2 0.75
3 0.83
4 0.83
5 0.63
6 0.97
7 0.97
8 1
9 1

CONCLUSIONS

In the paper we propose an approach to music infor-
mation retrieval, where the search query is a MusicXML
sequence. Being considered as a structured documents
retrieval, however it is a challenging task, because spe-
cific knowledge about the domain needed to be taken
into account. We perform retrieval based on rippling
and our index is stored as a PosgreSQL database, that
is constructed automatically for MusicXML documents
or manually for other formats. The work is still in
progress: we analyze the possibility to improve retrieval
efficiency, however the approach is already implemented
in a prototype system, that allows to perform fuzzy
search for sheet music.

REFERENCES

[1] Musipedia, http://www.musipedia.org (accessed 2019, Dec)
[2] MusicXML format, https://www.musicxml.com (accessed 2019,

Dec)
[3] PostgreSQL, https://www.postgresql.org (accessed 2019, Dec)
[4] C. D. Manning, P. Raghavan and H. Schütze Introduction to

Information Retrieval, Cambridge University Press. 2008.

[5] A. Bundy, D. Basin, D. Hutter, A. Ireland Rippling: Meta-level
Guidance for Mathematical Reasoning. Cambridge University
Press, 2005.

[6] Korukhova Y.S., Mytrova M.V. Sheet Music Retrieval /
Open Systems. DBMS — 2013. — № 7. — p. 57–58,
http://www.osp.ru/os/2013/07/13037358/ (accessed 2019, Dec)

[7] Dan Gusfield, Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology, Cambridge University
Press. 1997.

[8] Viro V., Peachnote: Music Score Search and Analysis Platform///
Proceedings of the 12th International Society for Music Informa-
tion Retrieval Conference, ISMIR 2011. pp. 359–362.

[9] Typke R. Music Retrieval Based on Melodic Similarity. Ph.D.
Thesis, University of Utrecht, 2007

[10] Typke R., Giannopoulos P., Veltkamp R.C., Wiering F., van Oost-
rum R. Using Transportation Distances for Measuring Melodic
Similarity // Proceedings of the Fourth International Conference
on Music Information Retrieval. 2003. pp. 107–114.

[11] Yang X., Chen Q., Wang X. A Novel Approach Based on
Fault Tolerance and Recursive Segmentation to Query by Hum-
ming // Advances in Computer Science and Information Tech-
nology: AST/UCMA/ISA/ACN. Conferences Joint Proceedings,
Springer–Verlag Berlin, Heidelberg, 2010. pp. 544–557.

[12] Korukhova Y.S., Mytrova M.V. Information retrieval for
music scores // Preprint of Keldysh Institute of Ap-
plied Mathematics — 2013. — № 48. — p. 1–16,
https://keldysh.ru/papers/2013/prep2013_48.pdf (accessed 2019,
Dec)

Об одном подходе к музыкальному
информационному поиску нотных
записей Корухова Ю.С., Толыбаева А.

В работе рассматривается задача поиска нотных записей
музыкальных произведений по заданному в виде последо-
вательности нот фрагменту мелодии. В связи с появлением
больших электронных нотных библиотек, такая задача ста-
новится особенно актуальной.

Поисковый запрос формулируется в виде файла фор-
мата MusicXML, который поддерживается большинством
программ – нотных редакторов наряду с их собственными
форматами. Поиск ведется в электронной нотной библиоте-
ке, которая должна быть предварительно проиндексирована.
Индекс хранится в виде базы данных PostgreSQL. Для
автоматического построения индекса по MusicXML файлам
создан специальный программный инструмент. Файлы дру-
гих форматов могут быть проиндексированы вручную либо с
использованием дополнительных программ. Взаимодействие
с индексом – базой данных возможно с помощью SQL –
запросов.

При реализации поиска возникает задача сравнения фраг-
мента – запроса с элементом индекса, причем представляет
интерес не только поиск точно совпадающих, но и похожих
на запрос произведений. Реализация нечеткого поиска вы-
полнена на основе волновых правил, традиционно приме-
няемых в автоматическом доказательстве теорем методом
математической индукции. При построении такого доказа-
тельства гипотеза и заключение индукции являются синтак-
сически похожими, и стоит задача устранения символьных
различий между ними. Для ее решения применяются спе-
циальные правила переписывания, которые по построению
уменьшают количество различий после их применения. В
работе составлены волновые правила для устранения раз-
личий похожих музыкальных фрагментов и возможности
корректировки неточности в поисковом запросе.

Предложенный в работе подход реализован в прототипной
программной системе поиска нотных записей.

Received 15.12.2019

344

http://www.musipedia.org
https://www.musicxml.com
https://www.postgresql.org
http://www.osp.ru/os/2013/07/13037358/
https://keldysh.ru/papers/2013/prep2013_48.pdf

